Note: I have ordered these in terms of what I think is increasing difficulty. You may have other opinions! Remember that this exam will be curved, I do not expect you to finish all the problems in 50 minutes.

1. Write down the prime factorization of 10 !.
2. Find the least nonnegative residue of $11^{67} \bmod 13$.
3. Find all incongruent solutions mod 40, as least nonnegative residues, to the following linear congruence:

$$
12 x \equiv 28 \bmod 40
$$

4. Use the Euclidean Algorithm to find $\operatorname{gcd}(390,72)$ and write this as a linear combination of the two.
5. Use the Chinese Remainder Theorem to find the smallest positive solution to the system:

$$
\begin{aligned}
& x \equiv 2 \bmod 5 \\
& x \equiv 1 \bmod 6 \\
& x \equiv 4 \bmod 7
\end{aligned}
$$

6. Use mathematical induction to prove that:

$$
n!\geq n^{3} \text { for } n \geq 6
$$

7. One of the following two sets is well-ordered and one is not. Decide which is which and justify. You may assume only that \mathbb{Z}^{+}is well-ordered.

$$
\begin{aligned}
S_{1} & =[0,1] \cap \mathbb{Q} \\
S_{2} & =\left\{1-2^{k} \mid k \in \mathbb{Z}^{+}\right\}
\end{aligned}
$$

8. Use the Fundamental Theorem of Arithmetic (uniqueness of prime factorization) to prove that $\sqrt{2}$ is irrational. Hint: Use contradiction.
9. Suppose $a, b, c, d \in \mathbb{Z}$ with $a|c, b| c, d=\operatorname{gcd}(a, b)$ and $d^{2} \mid c$. Prove that $a b \mid c$.
