
Math 406 Exam 1 Spring 2020 Solutions Justin Wyss-Gallifent

1. Write down the prime factorization of 10!. [5 pts]

Solution: We have
10! = (10)(9)(8)(7)(6)(5)(4)(3)(2)(1) = (2 · 5)

(
32
) (

23
)

(7) (2 · 3) (5)
(
22
)

(3) (2) = 28 ·34 ·52 ·7.

2. Find the least nonnegative residue of 1167 mod 13. [10 pts]

Solution: Since 11 ≡ −2 mod 13 we have 112 ≡ 4 mod 13, 114 ≡ 16 ≡ 3 mod 13, 118 ≡
9 mod 13, 1116 ≡ 81 ≡ 3 mod 13, 1132 ≡ 9 mod 13, 1164 ≡ 3 mod 13 and so 1167 ≡ 1164112111 ≡
(3)(4)(−2) ≡ 2 mod 13.

3. Find all incongruent solutions mod 40, as least nonnegative residues, to the following linear
congruence: [10 pts]

12x ≡ 28 mod 40

Solution: Since gcd (12, 40) = 4 | 28 there are 4 incongruent solutions. One can be found by
the EA or by noticing that 28 ≡ −12 mod 40 so x ≡ −1 is a solution. Then all solutions are

then given by x ≡ −1 + k
(

40
gcd (40,12)

)
mod 40 so this gives us x ≡ 39, 9, 19, 29 mod 40.

4. Use the Euclidean Algorithm to find gcd (390, 72) and write this as a linear combination of the [10 pts]
two.

Solution: We have:

390 = 5(72) + 30

72 = 2(30) + 12

30 = 2(12) + 6

12 = 2(6) + 0

So gcd (390, 72) = 6 and we have:

6 = 30− 2(12)

= 30− 2(72− 2(30))

= 5(30)− 2(72)

= 5(390− 5(72))− 2(72)

= 5(390)− 27(72)

5. Use the Chinese Remainder Theorem to find the smallest positive solution to the system: [15 pts]

x ≡ 2 mod 5

x ≡ 1 mod 6

x ≡ 4 mod 7

Solution: We have M = (5)(6)(7) = 210, M1 = (6)(7) = 42, M2 = (5)(7) = 35 and
M3 = (5)(6) = 30. We then solve:

• 42y1 ≡ 1 mod 5 which is 2y1 ≡ 1 mod 5 which has solution y1 ≡ 3 mod 5.

• 35y2 ≡ 1 mod 6 which is 5y2 ≡ 1 mod 6 which has solution y2 ≡ 5 mod 6.

• 30y3 ≡ 1 mod 7 which is 2y3 ≡ 1 mod 7 which has solution y3 ≡ 4 mod 7.

The solution is then x = (2)(42)(3) + (1)(35)(5) + (4)(30)(4) = 907 ≡ 67 mod 210.



6. Use mathematical induction to prove that: [10 pts]

n! ≥ n3 for n ≥ 6

Solution: For n = 6 we have n! = 6! = 720 and 63 = 216 so the statement is true. Assume
that for some k ≥ 6 we have k! ≥ k3 and we claim that (k + 1)! ≥ (k + 1)3. This is equivalent
to showing that k! ≥ (k + 1)2 which is equivalent to showing that k!− (k + 1)2 ≥ 0. Observe
that:

k!− (k + 1)2 ≥ k3 − (k + 1)2 = k3 − k2 − 2k − 1

= k(k2 − k − 2)− 1

= k(k(k − 1)− 2)− 1 ≥ 6(6(6− 1)− 2)− 1 = 167 ≥ 0

7. One of the following two sets is well-ordered and one is not. Decide which is which and justify. [15 pts]
You may assume only that Z+ is well-ordered.

S1 = [0, 1] ∩Q
S2 =

{
1− 2k | k ∈ Z+

}
Solution: The problem had an error: The set S1 is not well-ordered because the subset
(0, 0) ∩Q has no least element and the set S2 is not well-ordered because the set itself has no
least element.

8. Use the Fundamental Theorem of Arithmetic (uniqueness of prime factorization) to prove that [10 pts]√
2 is irrational. Hint: Use contradiction.

Solution: Suppose
√

2 = a
b with a, b ∈ Z+, then a2 = 2b2. If the PF of a is a = 2αA and

if the PF of b is b = 2βB then we have 22αA2 = 22β+1B2 which is impossible since prime
factorizations are unique.

9. Suppose a, b, c, d ∈ Z with a | c, b | c, d = gcd (a, b) and d2 | c. Prove that ab | c. [15 pts]

Solution: This problem had an error. For example if a = 2, b = 4 and c = 4 then a | c since
2 | 4, b | c since 4 | 4, d = gcd (a, b) = 2 and d2 | c since 4 | 4 but ab - c since 8 - 4.


