Math 406 Exam 1 Spring 2020 Solutions

1. Write down the prime factorization of 10!. **Solution:** We have $10! = (10)(9)(8)(7)(6)(5)(4)(3)(2)(1) = (2 \cdot 5)(3^2)(2^3)(7)(2 \cdot 3)(5)(2^2)(3)(2) = 2^8 \cdot 3^4 \cdot 5^2 \cdot 7.$

2. Find the least nonnegative residue of $11^{67} \mod 13$. [10 pts] Solution: Since $11 \equiv -2 \mod 13$ we have $11^2 \equiv 4 \mod 13$, $11^4 \equiv 16 \equiv 3 \mod 13$, $11^8 \equiv 9 \mod 13$, $11^{16} \equiv 81 \equiv 3 \mod 13$, $11^{32} \equiv 9 \mod 13$, $11^{64} \equiv 3 \mod 13$ and so $11^{67} \equiv 11^{64} 11^2 11^1 \equiv (3)(4)(-2) \equiv 2 \mod 13$.

3. Find all incongruent solutions mod 40, as least nonnegative residues, to the following linear congruence: [1

$$12x \equiv 28 \mod 40$$

Solution: Since gcd $(12, 40) = 4 \mid 28$ there are 4 incongruent solutions. One can be found by the EA or by noticing that $28 \equiv -12 \mod 40$ so $x \equiv -1$ is a solution. Then all solutions are then given by $x \equiv -1 + k \left(\frac{40}{\gcd(40, 12)}\right) \mod 40$ so this gives us $x \equiv 39, 9, 19, 29 \mod 40$.

4. Use the Euclidean Algorithm to find gcd (390, 72) and write this as a linear combination of the [10 pts] two.

Solution: We have:

$$390 = 5(72) + 30$$

$$72 = 2(30) + 12$$

$$30 = 2(12) + 6$$

$$12 = 2(6) + 0$$

So gcd(390, 72) = 6 and we have:

$$6 = 30 - 2(12)$$

= 30 - 2(72 - 2(30))
= 5(30) - 2(72)
= 5(390 - 5(72)) - 2(72)
= 5(390) - 27(72)

- 5. Use the Chinese Remainder Theorem to find the smallest positive solution to the system: [15 pts]
 - $x \equiv 2 \mod 5$ $x \equiv 1 \mod 6$ $x \equiv 4 \mod 7$

Solution: We have M = (5)(6)(7) = 210, $M_1 = (6)(7) = 42$, $M_2 = (5)(7) = 35$ and $M_3 = (5)(6) = 30$. We then solve:

- $42y_1 \equiv 1 \mod 5$ which is $2y_1 \equiv 1 \mod 5$ which has solution $y_1 \equiv 3 \mod 5$.
- $35y_2 \equiv 1 \mod 6$ which is $5y_2 \equiv 1 \mod 6$ which has solution $y_2 \equiv 5 \mod 6$.
- $30y_3 \equiv 1 \mod 7$ which is $2y_3 \equiv 1 \mod 7$ which has solution $y_3 \equiv 4 \mod 7$.

The solution is then $x = (2)(42)(3) + (1)(35)(5) + (4)(30)(4) = 907 \equiv 67 \mod 210.$

Justin Wyss-Gallifent

[10 pts]

[5 pts]

6. Use mathematical induction to prove that:

$$n! \ge n^3$$
 for $n \ge 6$

Solution: For n = 6 we have n! = 6! = 720 and $6^3 = 216$ so the statement is true. Assume that for some $k \ge 6$ we have $k! \ge k^3$ and we claim that $(k + 1)! \ge (k + 1)^3$. This is equivalent to showing that $k! \ge (k + 1)^2$ which is equivalent to showing that $k! - (k + 1)^2 \ge 0$. Observe that:

$$k! - (k+1)^2 \ge k^3 - (k+1)^2 = k^3 - k^2 - 2k - 1$$
$$= k(k^2 - k - 2) - 1$$
$$= k(k(k-1) - 2) - 1 \ge 6(6(6-1) - 2) - 1 = 167 \ge 0$$

7. One of the following two sets is well-ordered and one is not. Decide which is which and justify. [15 pts] You may assume only that \mathbb{Z}^+ is well-ordered.

$$S_1 = [0, 1] \cap \mathbb{Q}$$

 $S_2 = \{1 - 2^k \mid k \in \mathbb{Z}^+\}$

Solution: The problem had an error: The set S_1 is not well-ordered because the subset $(0,0) \cap \mathbb{Q}$ has no least element and the set S_2 is not well-ordered because the set itself has no least element.

8. Use the Fundamental Theorem of Arithmetic (uniqueness of prime factorization) to prove that $\sqrt{2}$ is irrational. Hint: Use contradiction. [10 pts]

Solution: Suppose $\sqrt{2} = \frac{a}{b}$ with $a, b \in \mathbb{Z}^+$, then $a^2 = 2b^2$. If the PF of a is $a = 2^{\alpha}A$ and if the PF of b is $b = 2^{\beta}B$ then we have $2^{2\alpha}A^2 = 2^{2\beta+1}B^2$ which is impossible since prime factorizations are unique.

9. Suppose $a, b, c, d \in \mathbb{Z}$ with $a \mid c, b \mid c, d = \gcd(a, b)$ and $d^2 \mid c$. Prove that $ab \mid c$. [15 pts]

Solution: This problem had an error. For example if a = 2, b = 4 and c = 4 then $a \mid c$ since $2 \mid 4$, $b \mid c$ since $4 \mid 4$, d = gcd(a, b) = 2 and $d^2 \mid c$ since $4 \mid 4$ but $ab \nmid c$ since $8 \nmid 4$.