Math 406 Exam 1 Spring 2020 Solutions

1. Write down the prime factorization of 10 !.

Solution: We have
$10!=(10)(9)(8)(7)(6)(5)(4)(3)(2)(1)=(2 \cdot 5)\left(3^{2}\right)\left(2^{3}\right)(7)(2 \cdot 3)(5)\left(2^{2}\right)(3)(2)=2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7$.
2. Find the least nonnegative residue of $11^{67} \bmod 13$.

Solution: Since $11 \equiv-2 \bmod 13$ we have $11^{2} \equiv 4 \bmod 13,11^{4} \equiv 16 \equiv 3 \bmod 13,11^{8} \equiv$ $9 \bmod 13,11^{16} \equiv 81 \equiv 3 \bmod 13,11^{32} \equiv 9 \bmod 13,11^{64} \equiv 3 \bmod 13$ and so $11^{67} \equiv 11^{64} 11^{2} 11^{1} \equiv$ $(3)(4)(-2) \equiv 2 \bmod 13$ 。
3. Find all incongruent solutions $\bmod 40$, as least nonnegative residues, to the following linear congruence:

$$
12 x \equiv 28 \bmod 40
$$

Solution: Since $\operatorname{gcd}(12,40)=4 \mid 28$ there are 4 incongruent solutions. One can be found by the EA or by noticing that $28 \equiv-12 \bmod 40$ so $x \equiv-1$ is a solution. Then all solutions are then given by $x \equiv-1+k\left(\frac{40}{\operatorname{gcd}(40,12)}\right) \bmod 40$ so this gives us $x \equiv 39,9,19,29 \bmod 40$.
4. Use the Euclidean Algorithm to find $\operatorname{gcd}(390,72)$ and write this as a linear combination of the two.
Solution: We have:

$$
\begin{aligned}
390 & =5(72)+30 \\
72 & =2(30)+12 \\
30 & =2(12)+6 \\
12 & =2(6)+0
\end{aligned}
$$

So $\operatorname{gcd}(390,72)=6$ and we have:

$$
\begin{aligned}
6 & =30-2(12) \\
& =30-2(72-2(30)) \\
& =5(30)-2(72) \\
& =5(390-5(72))-2(72) \\
& =5(390)-27(72)
\end{aligned}
$$

5. Use the Chinese Remainder Theorem to find the smallest positive solution to the system:
[15 pts]

$$
\begin{aligned}
& x \equiv 2 \bmod 5 \\
& x \equiv 1 \bmod 6 \\
& x \equiv 4 \bmod 7
\end{aligned}
$$

Solution: We have $M=(5)(6)(7)=210, M_{1}=(6)(7)=42, M_{2}=(5)(7)=35$ and $M_{3}=(5)(6)=30$. We then solve:

- $42 y_{1} \equiv 1 \bmod 5$ which is $2 y_{1} \equiv 1 \bmod 5$ which has solution $y_{1} \equiv 3 \bmod 5$.
- $35 y_{2} \equiv 1 \bmod 6$ which is $5 y_{2} \equiv 1 \bmod 6$ which has solution $y_{2} \equiv 5 \bmod 6$.
- $30 y_{3} \equiv 1 \bmod 7$ which is $2 y_{3} \equiv 1 \bmod 7$ which has solution $y_{3} \equiv 4 \bmod 7$.

The solution is then $x=(2)(42)(3)+(1)(35)(5)+(4)(30)(4)=907 \equiv 67 \bmod 210$ 。
6. Use mathematical induction to prove that:

$$
n!\geq n^{3} \text { for } n \geq 6
$$

Solution: For $n=6$ we have $n!=6!=720$ and $6^{3}=216$ so the statement is true. Assume that for some $k \geq 6$ we have $k!\geq k^{3}$ and we claim that $(k+1)!\geq(k+1)^{3}$. This is equivalent to showing that $k!\geq(k+1)^{2}$ which is equivalent to showing that $k!-(k+1)^{2} \geq 0$. Observe that:

$$
\begin{aligned}
k!-(k+1)^{2} \geq k^{3}-(k+1)^{2} & =k^{3}-k^{2}-2 k-1 \\
& =k\left(k^{2}-k-2\right)-1 \\
& =k(k(k-1)-2)-1 \geq 6(6(6-1)-2)-1=167 \geq 0
\end{aligned}
$$

7. One of the following two sets is well-ordered and one is not. Decide which is which and justify. You may assume only that \mathbb{Z}^{+}is well-ordered.

$$
\begin{aligned}
& S_{1}=[0,1] \cap \mathbb{Q} \\
& S_{2}=\left\{1-2^{k} \mid k \in \mathbb{Z}^{+}\right\}
\end{aligned}
$$

Solution: The problem had an error: The set S_{1} is not well-ordered because the subset $(0,0) \cap \mathbb{Q}$ has no least element and the set S_{2} is not well-ordered because the set itself has no least element.
8. Use the Fundamental Theorem of Arithmetic (uniqueness of prime factorization) to prove that $\sqrt{2}$ is irrational. Hint: Use contradiction.
Solution: Suppose $\sqrt{2}=\frac{a}{b}$ with $a, b \in \mathbb{Z}^{+}$, then $a^{2}=2 b^{2}$. If the PF of a is $a=2^{\alpha} A$ and if the PF of b is $b=2^{\beta} B$ then we have $2^{2 \alpha} A^{2}=2^{2 \beta+1} B^{2}$ which is impossible since prime factorizations are unique.
9. Suppose $a, b, c, d \in \mathbb{Z}$ with $a|c, b| c, d=\operatorname{gcd}(a, b)$ and $d^{2} \mid c$. Prove that $a b \mid c$.

Solution: This problem had an error. For example if $a=2, b=4$ and $c=4$ then $a \mid c$ since $2|4, b| c$ since $4 \mid 4, d=\operatorname{gcd}(a, b)=2$ and $d^{2} \mid c$ since $4 \mid 4$ but $a b \nmid c$ since $8 \nmid 4$.

