MATH 406 (JWG) Exam 2 Spring 2021 Sample 1

1. Show that 91 is a Fermat Pseudoprime to the base 3. Note that 91 is not prime!
2. Prove that if $n \geq 2$ and $\operatorname{gcd}(6, n)=1$ then $\phi(3 n)=2 \phi(2 n)$.
3. Classify all numbers n for which $\tau(n)=12$.
4. Suppose n is a perfect number and p is a prime such that $p n$ is also perfect. $\operatorname{Prove} \operatorname{gcd}(p, n) \neq 1$.
5. Prove that $a^{\phi(b)}+b^{\phi(a)} \equiv 1 \bmod a b$ if $\operatorname{gcd}(a, b)=1$.
6. Suppose that p is prime and $n \in \mathbb{Z}^{+}$. Prove that $p \nmid n$ iff $\phi(p n)=(p-1) \phi(n)$.
7. (a) Show that 3 is a primitive root modulo 17.
(b) Find all primitive roots modulo 17 .
8. A partial table of indices for 7 , a primitive root of 13 is given here:

a	1	2	3	4	5	6	7	8	9	10	11	12
$\operatorname{ind}_{7} a$	12	b	8	10	3	7	a	9	4	2	5	6

(a) Find a and b.
(b) Use the table to solve the congruence $3^{x-1} \equiv 5 \bmod 13$.
(c) Use the table to solve the congruence $4 x^{5} \equiv 11 \bmod 13$.
9. Suppose $\operatorname{ord}_{p} a=3$, where p is an odd prime. Show $\operatorname{ord}_{p}(a+1)=6$.
10. Suppose r is a primitive root modulo m, and k is a positive integer with $\operatorname{gcd}(k, \phi(m))=1$. Prove r^{k} is also a primitive root.
Note: The intention is to do this without the theorem from class.

