MATH 406 (JWG) Exam 2 Spring 2021 Sample 1

1. Show that 91 is a Fermat Pseudoprime to the base 3. Note that 91 is not prime!

Solution:

Show that $3^{90} \equiv 1 \bmod 91$.
2. Prove that if $n \geq 2$ and $\operatorname{gcd}(6, n)=1$ then $\phi(3 n)=2 \phi(2 n)$.

Solution:

Since $\operatorname{gcd}(6, n)=1$ we know $\operatorname{gcd}(2, n)=\operatorname{gcd}(3, n)=1$ and then we have $\phi(3 n)=\phi(3) \phi(n)=$ $2 \phi(n)$ and $2 \phi(2 n)=2 \phi(2) \phi(n)=2 \phi(n)$.
3. Classify all numbers n for which $\tau(n)=12$.

Solution:
If $n=p_{1}^{\alpha_{1}} \ldots p_{k}^{\alpha_{k}}$ then $\tau(n)=\left(\alpha_{1}+1\right) \ldots\left(\alpha_{k}+1\right)=12$. The ways to get a product of 12 are $(12)=(2)(6)=(3)(4)=(2)(2)(3)$ so we can have at most three primes and so either $n=p^{11}$, $n=p q^{5}, n=p^{2} q^{3}$, or $n=p q r^{2}$.
4. Suppose n is a perfect number and p is a prime such that $p n$ is also perfect. Prove $\operatorname{gcd}(p, n) \neq 1$.

Solution:
By contradiction. If $\operatorname{gcd}(p, n)=1$ then $2 p n=\sigma(p n)=\sigma(p) \sigma(n)=\sigma(p)(2 n)$ so $\sigma(p)=p$ which is a contradiction since $\sigma(p)=p+1$.
5. Prove that $a^{\phi(b)}+b^{\phi(a)} \equiv 1 \bmod a b$ if $\operatorname{gcd}(a, b)=1$.

Solution:

Since $\operatorname{gcd}(a, b)=1$ we have $a^{\phi(b)} \equiv 1 \bmod b$. Then since $b \equiv 0 \bmod b$ we get $a^{\phi(b)}+b^{\phi(a)} \equiv 1$ $\bmod b$.
Since $\operatorname{gcd}(a, b)=1$ we have $b^{\phi(a)} \equiv 1 \bmod a$. Then since $a \equiv 0 \bmod a$ we get $a^{\phi(b)}+b^{\phi(a)} \equiv 1$ $\bmod a$.
Since $\operatorname{gcd}(a, b)=1$ we then get $a^{\phi(b)}+b^{\phi(a)} \equiv 1 \bmod a b$.
6. Suppose that p is prime and $n \in \mathbb{Z}^{+}$. Prove that $p \nmid n$ iff $\phi(p n)=(p-1) \phi(n)$.

Solution:

Suppose $p \nmid n$ then $\operatorname{gcd}(p, n)=1$. Then $\phi(p n)=\phi(p) \phi(n)=(p-1) \phi(n)$.
On the other hand if $p \mid n$ then $n=p^{\alpha} N$ where $\operatorname{gcd}(p, N)=1$ (factoring out all the p) and so

$$
\begin{gathered}
\phi(p n)=\phi\left(p p^{\alpha} N\right)=\phi\left(p^{\alpha+1} N\right)=\phi\left(p^{\alpha+1}\right) \phi(N)=\left(p^{\alpha+1}-p^{\alpha}\right) \phi(N) \\
=p\left(p^{\alpha}-p^{\alpha-1}\right) \phi(N)=p \phi\left(p^{\alpha}\right) \phi(N)=p \phi\left(p^{\alpha} N\right)=p \phi(n) \neq(p-1) \phi(n)
\end{gathered}
$$

7. (a) Show that 3 is a primitive root modulo 17 .

Solution:

Just show that $\operatorname{ord}_{17} 3=\phi(17)=16$.
(b) Find all primitive roots modulo 17.

Solution:

These will be 3^{k} for all k with $\operatorname{gcd}(k, \phi(17))=1$.
8. A partial table of indices for 7 , a primitive root of 13 is given here:

a	1	2	3	4	5	6	7	8	9	10	11	12
$\operatorname{ind}_{7} a$	12	b	8	10	3	7	a	9	4	2	5	6

(a) Find a and b.

Solution:

We have $\operatorname{ind}_{7} 7=1$ because $7^{1}=7$ and we have $\operatorname{ind}_{7} 2=11$ because it's the only number missing, or alternately because $7^{11} \equiv 2 \bmod 13$.
(b) Use the table to solve the congruence $3^{x-1} \equiv 5 \bmod 13$.

Solution:

We have:

$$
\begin{aligned}
3^{x-1} & \equiv 5 \quad \bmod 13 \\
\operatorname{ind}_{7} 3^{x-1} & \equiv \operatorname{ind}_{7} 5 \quad \bmod 12 \\
(x-1) 8 & \equiv 3 \quad \bmod 12 \\
8 x-8 & \equiv 3 \quad \bmod 12 \\
8 x & \equiv 11 \quad \bmod 12
\end{aligned}
$$

which has no solutions because $\operatorname{gcd}(8,12)=4 \nmid 11$.
(c) Use the table to solve the congruence $4 x^{5} \equiv 11 \bmod 13$.

Solution:

We have:

$$
\begin{aligned}
4 x^{5} & \equiv 11 \quad \bmod 13 \\
\operatorname{ind}_{7}\left(4 x^{5}\right) & \equiv \operatorname{ind}_{7} 11 \quad \bmod \phi(13)=12 \\
\operatorname{ind}_{7} 4+5 \operatorname{ind}_{7} x & \equiv \operatorname{ind}_{7} 11 \quad \bmod 12 \\
10+5 \operatorname{ind}_{7} x & \equiv 5 \quad \bmod 12 \\
\operatorname{Sind}_{7} x & \equiv 7 \quad \bmod 12 \\
\operatorname{ind}_{7} x & \equiv 11 \quad \bmod 12 \\
x & \equiv 2 \quad \bmod 13
\end{aligned}
$$

9. Suppose $\operatorname{ord}_{p} a=3$, where p is an odd prime. Show $\operatorname{ord}_{p}(a+1)=6$.

Solution:

First note that we know $a^{3} \equiv 1 \bmod p$ so $a^{3}-1 \equiv 0 \bmod p$. This tells us $p \mid(a-1)\left(a^{2}+a+1\right)$ so p divides one of them and since $a \not \equiv 1 \bmod p$ (because $\left.\operatorname{ord}_{p} a=3\right)$ we must have $a^{2}+a+1 \equiv 0$ $\bmod p$.
With this observe that

$$
(a+1)^{6} \equiv\left(a^{2}+2 a+1\right)^{3} \equiv\left(a^{2}+a+1+a\right)^{3} \equiv(0+a)^{3} \equiv a^{3} \equiv 1 \quad \bmod p
$$

so that the order divides 6 .

- If $\operatorname{ord}_{p}(a+1)=1$ then $a+1 \equiv 1 \bmod p$ so $a \equiv 0 \bmod p$ which is not possible because $\operatorname{gcd}(a, p)$ must be 1 .
- If $\operatorname{ord}_{p}(a+1)=2$ then $(a+1)^{2} \equiv 1 \bmod p$ so $a^{2}+2 a+1 \equiv 1 \bmod p$ so $0+a \equiv 1 \bmod p$ which is not possible since $\operatorname{ord}_{p} a=3$.
- If $\operatorname{ord}_{p}(a+1)=3$ then $(a+1)^{3} \equiv 1 \bmod p$ so $a^{3}+3 a^{2}+3 a+1 \equiv 1 \bmod p$ so $1 \equiv$ $a^{3}+3\left(a^{2}+a+1\right)-2 \equiv 1+3(0)-2 \equiv-1 \bmod p$ so $p \mid 2$ which is not possible since p is an odd prime.

Thus $\operatorname{ord}_{p}(a+1)=6$.
10. Suppose r is a primitive root modulo m, and k is a positive integer with $\operatorname{gcd}(k, \phi(m))=1$. Prove r^{k} is also a primitive root.

Solution:

Note: The intention is to do this without the theorem from class.
The claim is that $\operatorname{ord}_{m}\left(r^{k}\right)=\phi(m)$. Let $h=\operatorname{ord}_{m}\left(r^{k}\right)$.
First observe that

$$
\left(r^{k}\right)^{\phi(m)} \equiv\left(r^{\phi(m)}\right)^{k} \equiv(1)^{k} \equiv 1 \quad \bmod m
$$

so we know that $h \mid \phi(m)$.
Second note that $\left(r^{k}\right)^{h} \equiv 1 \bmod m$ so that $r^{k h} \equiv 1 \bmod m$ so that $\operatorname{ord}_{m} r=\phi(m)$ must divide $k h$. But since $\operatorname{gcd}(k, \phi(m))=1$ we have $\phi(m) \mid h$.
Since $h \mid \phi(m)$ and $\phi(m) \mid h$ and both are positive we know $h=\phi(m)$ as desired.

