1. Show that 91 is a Fermat Pseudoprime to the base 3. Note that 91 is not prime! Solution:

Show that $3^{90} \equiv 1 \mod 91$.

2. Prove that if $n \ge 2$ and gcd(6, n) = 1 then $\phi(3n) = 2\phi(2n)$.

Solution:

Since gcd(6, n) = 1 we know gcd(2, n) = gcd(3, n) = 1 and then we have $\phi(3n) = \phi(3)\phi(n) = \phi(3)\phi(n)$ $2\phi(n)$ and $2\phi(2n) = 2\phi(2)\phi(n) = 2\phi(n)$.

3. Classify all numbers n for which $\tau(n) = 12$.

Solution:

If $n = p_1^{\alpha_1} \dots p_k^{\alpha_k}$ then $\tau(n) = (\alpha_1 + 1) \dots (\alpha_k + 1) = 12$. The ways to get a product of 12 are (12) = (2)(6) = (3)(4) = (2)(2)(3) so we can have at most three primes and so either $n = p^{11}$, $n = pq^5, n = p^2q^3, \text{ or } n = pqr^2.$

4. Suppose n is a perfect number and p is a prime such that pn is also perfect. Prove $gcd(p, n) \neq 1$.

Solution:

By contradiction. If gcd(p, n) = 1 then $2pn = \sigma(pn) = \sigma(p)\sigma(n) = \sigma(p)(2n)$ so $\sigma(p) = p$ which is a contradiction since $\sigma(p) = p + 1$.

5. Prove that $a^{\phi(b)} + b^{\phi(a)} \equiv 1 \mod ab$ if gcd(a, b) = 1.

Solution:

Since gcd(a, b) = 1 we have $a^{\phi(b)} \equiv 1 \mod b$. Then since $b \equiv 0 \mod b$ we get $a^{\phi(b)} + b^{\phi(a)} \equiv 1$ $\mod b$.

Since gcd(a,b) = 1 we have $b^{\phi(a)} \equiv 1 \mod a$. Then since $a \equiv 0 \mod a$ we get $a^{\phi(b)} + b^{\phi(a)} \equiv 1$ $\mod a$.

Since gcd(a, b) = 1 we then get $a^{\phi(b)} + b^{\phi(a)} \equiv 1 \mod ab$.

6. Suppose that p is prime and $n \in \mathbb{Z}^+$. Prove that $p \nmid n$ iff $\phi(pn) = (p-1)\phi(n)$.

Solution:

Suppose $p \nmid n$ then gcd(p, n) = 1. Then $\phi(pn) = \phi(p)\phi(n) = (p-1)\phi(n)$.

On the other hand if $p \mid n$ then $n = p^{\alpha}N$ where gcd(p, N) = 1 (factoring out all the p) and so

$$\phi(pn) = \phi(pp^{\alpha}N) = \phi(p^{\alpha+1}N) = \phi(p^{\alpha+1})\phi(N) = (p^{\alpha+1} - p^{\alpha})\phi(N)$$

$$= p(p^{\alpha} - p^{\alpha - 1})\phi(N) = p\phi(p^{\alpha})\phi(N) = p\phi(p^{\alpha}N) = p\phi(n) \neq (p - 1)\phi(n)$$

7. (a) Show that 3 is a primitive root modulo 17.

Solution:

Just show that $\text{ord}_{17}3 = \phi(17) = 16$.

(b) Find all primitive roots modulo 17. Solution:

These will be 3^k for all k with $gcd(k, \phi(17)) = 1$.

8. A partial table of indices for 7, a primitive root of 13 is given here:

a	1	2	3	4	5	6	7	8	9	10	11	12
$\operatorname{ind}_7 a$	12	b	8	10	3	7	a	9	4	2	5	6

(a) Find a and b.

Solution:

We have $\operatorname{ind}_7 7 = 1$ because $7^1 = 7$ and we have $\operatorname{ind}_7 2 = 11$ because it's the only number missing, or alternately because $7^{11} \equiv 2 \mod 13$.

- (b) Use the table to solve the congruence $3^{x-1} \equiv 5 \mod 13$.
 - Solution:

We have:

$$3^{x-1} \equiv 5 \mod 13$$

$$\operatorname{ind}_{7}3^{x-1} \equiv \operatorname{ind}_{7}5 \mod 12$$

$$(x-1)8 \equiv 3 \mod 12$$

$$8x - 8 \equiv 3 \mod 12$$

$$8x \equiv 11 \mod 12$$

which has no solutions because $gcd(8, 12) = 4 \nmid 11$.

(c) Use the table to solve the congruence $4x^5 \equiv 11 \mod 13$. Solution:

We have:

$$4x^5 \equiv 11 \mod 13$$

$$\operatorname{ind}_7(4x^5) \equiv \operatorname{ind}_711 \mod \phi(13) = 12$$

$$\operatorname{ind}_74 + 5\operatorname{ind}_7x \equiv \operatorname{ind}_711 \mod 12$$

$$10 + 5\operatorname{ind}_7x \equiv 5 \mod 12$$

$$5\operatorname{ind}_7x \equiv 7 \mod 12$$

$$\operatorname{ind}_7x \equiv 11 \mod 12$$

$$x \equiv 2 \mod 13$$

9. Suppose $\operatorname{ord}_p a = 3$, where p is an odd prime. Show $\operatorname{ord}_p(a+1) = 6$.

Solution:

First note that we know $a^3 \equiv 1 \mod p$ so $a^3 - 1 \equiv 0 \mod p$. This tells us $p \mid (a-1)(a^2 + a + 1)$ so p divides one of them and since $a \not\equiv 1 \mod p$ (because $\operatorname{ord}_p a = 3$) we must have $a^2 + a + 1 \equiv 0 \mod p$.

With this observe that

$$(a+1)^6 \equiv (a^2+2a+1)^3 \equiv (a^2+a+1+a)^3 \equiv (0+a)^3 \equiv a^3 \equiv 1 \mod p$$

so that the order divides 6.

- If $\operatorname{ord}_p(a+1) = 1$ then $a+1 \equiv 1 \mod p$ so $a \equiv 0 \mod p$ which is not possible because $\gcd(a, p)$ must be 1.
- If $\operatorname{ord}_p(a+1) = 2$ then $(a+1)^2 \equiv 1 \mod p$ so $a^2 + 2a + 1 \equiv 1 \mod p$ so $0 + a \equiv 1 \mod p$ which is not possible since $\operatorname{ord}_p a = 3$.
- If $\operatorname{ord}_p(a+1) = 3$ then $(a+1)^3 \equiv 1 \mod p$ so $a^3 + 3a^2 + 3a + 1 \equiv 1 \mod p$ so $1 \equiv a^3 + 3(a^2 + a + 1) 2 \equiv 1 + 3(0) 2 \equiv -1 \mod p$ so $p \mid 2$ which is not possible since p is an odd prime.

Thus $\operatorname{ord}_p(a+1) = 6$.

10. Suppose r is a primitive root modulo m, and k is a positive integer with $gcd(k, \phi(m)) = 1$. Prove r^k is also a primitive root.

Solution:

Note: The intention is to do this without the theorem from class.

The claim is that $\operatorname{ord}_m(r^k) = \phi(m)$. Let $h = \operatorname{ord}_m(r^k)$.

First observe that

$$(r^k)^{\phi(m)} \equiv (r^{\phi(m)})^k \equiv (1)^k \equiv 1 \mod m$$

so we know that $h \mid \phi(m)$.

Second note that $(r^k)^h \equiv 1 \mod m$ so that $r^{kh} \equiv 1 \mod m$ so that $\operatorname{ord}_m r = \phi(m)$ must divide kh. But since $\operatorname{gcd}(k, \phi(m)) = 1$ we have $\phi(m) \mid h$.

Since $h \mid \phi(m)$ and $\phi(m) \mid h$ and both are positive we know $h = \phi(m)$ as desired.