MATH 406 (JWG) Exam 2 Spring 2021 Sample 2

1. Calculate:
(a) $\phi\left(2^{3} \cdot 5 \cdot 11^{2}\right)$
(b) $\sigma(200)$
(c) $\tau(2000)$
2. Use Wilson's Theorem to find the remainder when 16 ! is divided by 19.
3. Find all n with $\phi(n)=16$.
4. Show that 25 is a Fermat Pseudoprime to the base 7.
5. An abundant number is a number n with $\sigma(n)>2 n$. Prove that there are infinitely many even abundant numbers by finding one abundant number and by showing that if n is abundant and a prime p satisfies $p \nmid n$ then $p n$ is also abundant.
6. A partial table of indices for 2 , a primitive root of 13 , is given here:

a	1	2	3	4	5	6	7	8	9	10	11	12
$\operatorname{ind}_{2} a$	12	1	4	2	9	5	11	3	a	b	7	6

(a) Find a and b with justification.
(b) Use the table to solve the congruence $3^{2 x+1} \equiv 9 \bmod 13$.
(c) Use the table to solve the congruence $7 x^{5} \equiv 3 \bmod 13$.
7. Prove that if $\operatorname{ord}_{n} a=h k$ then $\operatorname{ord}_{n}\left(a^{h}\right)=k$.

Note: The intention is to do this without the theorem from class.
8. Let r be a primitive root for an odd prime p. Prove that $\operatorname{ind}_{r}(p-1)=\frac{1}{2}(p-1)$.
9. Find all positive integers n such that $\phi(n)$ is prime. Explain!
10. Show that if a is relatively prime to m and $\operatorname{ord}_{m} a=m-1$ then m is prime.

