MATH 406 (JWG) Exam 2 Spring 2021 Sample 2

1. Calculate:
(a) $\phi\left(2^{3} \cdot 5 \cdot 11^{2}\right)$

Solution:
Just use the rules!
(b) $\sigma(200)$

Solution:

Find the prime factorization and then just use the rules!
(c) $\tau(2000)$

Solution:
Find the prime factorization and then just use the rules!
2. Use Wilson's Theorem to find the remainder when 16 ! is divided by 19 .

Solution:

We have:

$$
18!\equiv-1 \quad \bmod 19
$$

$$
\begin{aligned}
(18)(17) 16!\equiv-1 & \bmod 19 \\
(-1)(-2) 16!\equiv-1 & \bmod 19 \\
(-2) 16!\equiv 1 & \bmod 19 \\
(-10)(-2) 16!\equiv-10 & \bmod 19 \\
(20) 16!\equiv 9 & \bmod 19 \\
16!\equiv 9 & \bmod 19
\end{aligned}
$$

3. Find all n with $\phi(n)=16$.

Solution:
We've done a bunch of these by now!
4. Show that 25 is a Fermat Pseudoprime to the base 7.

Solution:

Just show that $7^{24} \equiv 1 \bmod 25$.
5. An abundant number is a number n with $\sigma(n)>2 n$. Prove that there are infinitely many even abundant numbers by finding one abundant number and by showing that if n is abundant and a prime p satisfies $p \nmid n$ then $p n$ is also abundant.

Solution:

For example 12 is abundant since $\sigma(12)=1+2+3+4+6+12=28>2(12)$.
If $p \nmid n$ then $\operatorname{gcd}(p, n)=1$ and so

$$
\sigma(p n)=\sigma(p) \sigma(n)=(p+1) \sigma(n)>(p+1) 2 n=2 n p+2 n>2 p n
$$

thus $p n$ is abundant.
6. A partial table of indices for 2 , a primitive root of 13 , is given here:

a	1	2	3	4	5	6	7	8	9	10	11	12
$\operatorname{ind}_{2} a$	12	1	4	2	9	5	11	3	a	b	7	6

(a) Find a and b with justification.

Solution:

First:

$$
a=\operatorname{ind}_{2} 9=\operatorname{ind}_{2} 3^{2}=2 \operatorname{ind}_{2} 3=2(4)=8
$$

Second:

$$
b=\operatorname{ind}_{2}(10)=\operatorname{ind}_{2}(2 \cdot 5)=\operatorname{ind}_{2} 2+\operatorname{ind}_{2} 5=1+9=10
$$

(b) Use the table to solve the congruence $3^{2 x+1} \equiv 9 \bmod 13$.

Solution:

We have:

$$
\begin{aligned}
3^{2 x+1} & \equiv 9 \quad \bmod 13 \\
\operatorname{ind}_{2} 3^{2 x+1} & \equiv \operatorname{ind}_{2} 9 \quad \bmod \phi(13)=12 \\
(2 x+1) \operatorname{ind}_{2} 3 & \equiv \operatorname{ind}_{2} 9 \quad \bmod 12 \\
(2 x+1)(4) & \equiv 8 \quad \bmod 12 \\
8 x+4 & \equiv 8 \quad \bmod 12 \\
8 x & =4 \quad \bmod 12 \\
2 x & =1 \quad \bmod 3 \\
x & =1 \quad \bmod 3 \\
x & =1,4,7,11 \quad \bmod 12
\end{aligned}
$$

Note: I didn't ask for the solution mod 12 so you could have left it mod 3 .
(c) Use the table to solve the congruence $7 x^{5} \equiv 3 \bmod 13$.

Solution:

We have:

$$
\begin{aligned}
7 x^{5} & \equiv 3 \quad \bmod 13 \\
\operatorname{ind}_{2} 7 x^{5} & \equiv \operatorname{ind}_{2} 3 \quad \bmod \phi(13)=12 \\
\operatorname{ind}_{2} 7+5 \operatorname{ind}_{2} x & \equiv 4 \quad \bmod 12 \\
11+5 \operatorname{ind}_{2} x & \equiv 4 \quad \bmod 12 \\
5 \operatorname{ind}_{2} x & \equiv 5 \quad \bmod 12 \\
\operatorname{ind}_{2} x & \equiv 1 \quad \bmod 12 \\
x & \equiv 2 \quad \bmod 13
\end{aligned}
$$

7. Prove that if $\operatorname{ord}_{n} a=h k$ then $\operatorname{ord}_{n}\left(a^{h}\right)=k$.

Note: The intention is to do this without the theorem from class.

Solution:

First note that $\left(a^{h}\right)^{k} \equiv a^{h k} \equiv 1 \bmod n$. Then suppose that $\left(a^{h}\right)^{j} \equiv 1 \bmod n$ so then $a^{h j} \equiv 1$ $\bmod n$ so that $h j \geq h k$ so that $j \geq k$. Thus $\operatorname{ord}_{n}\left(a^{h}\right)=k$.
8. Let r be a primitive root for an odd prime p. Prove that $\operatorname{ind}_{r}(p-1)=\frac{1}{2}(p-1)$.

Solution:

We know by Euler's Theorem that:

$$
r^{p-1} \equiv 1 \quad \bmod p
$$

Thus:

$$
\left.\left.p \left\lvert\, r^{p-1}-1=\left(r^{\frac{1}{2}(p-1)}+1\right)\right.\right) r^{\frac{1}{2}(p-1)}-1\right)
$$

So p divides one of them. If $p \left\lvert\, r^{\frac{1}{2}(p-1)}-1\right.$ then $r^{\frac{1}{2}(p-1)} \equiv 1 \bmod p$ which contradicts the fact that r is a primitive root. Thus we know that $p \left\lvert\, r^{\frac{1}{2}(p-1)}-1\right.$ and so $r^{\frac{1}{2}(p-1)} \equiv 1 \bmod p$ which is exactly the claim.
9. Find all positive integers n such that $\phi(n)$ is prime. Explain!

Solution:

Let p be a prime which divides n. We know that $(p-1) \mid \phi(n)$.
If $p \geq 5$ then $\phi(n)$ is even and greater than or equal to 4 and is then not prime. Thus we can only have $n=2^{a} 3^{b}$.
If $a \geq 3$ we know that $\phi\left(2^{b}\right)=2^{a-1}(2-1)=2^{a-1} \mid \phi(n)$ which then tells us that $4 \mid \phi(n)$, a contradiction. Thus we can only have $a=0,1,2$.
If $b \geq 2$ we know that $\phi\left(3^{b}\right)=3^{b-1}(3-1)=3^{b-1} 2 \mid \phi(n)$ which then tells us $6 \mid \phi(n)$, a contradiction. Thus we can only have $b=0,1$.
Thus we could only have $n \in\left\{2^{0} 3^{0}, 2^{1} 3^{0}, 2^{2} 3^{0}, 2^{0} 3^{1}, 2^{1} 3^{1}, 2^{2} 3^{1}\right\}=\{1,2,4,3,6,12\}$ and checking these shows that only $n=4,3,6$ work.
10. Show that if a is relatively prime to m and $\operatorname{ord}_{m} a=m-1$ then m is prime.

Solution:
Given that $\operatorname{ord}_{m} a=m-1$, since $\operatorname{ord}_{m} a \mid \phi(m)$ we have $m-1 \mid \phi(m)$. But $\phi(m) \leq m-1$ so then $\phi(m)=m-1$ so then m is prime (since everything less than it is relatively prime to it.)

