
Math 406 Exam 2 Solutions Justin Wyss-Gallifent

1. Use the CRT to find the second smallest positive integer solution to the following system:

3x ≡ 6 mod 15

5x ≡ 4 mod 6

x+ 1 ≡ 2 mod 7

Solution: We rewrite and solve these individually as:

x ≡ 2 mod 5

x ≡ 2 mod 6

x ≡ 1 mod 7

Then M = (5)(6)(7) = 210, M1 = 42, M2 = 35 and M3 = 30. We then solve:

42y1 ≡ 1 mod 5 which is 2y1 ≡ 1 mod 5 so y1 = 3.

35y2 ≡ 1 mod 6 which is 5y2 ≡ 1 mod 6 so y2 = 5.

30y3 ≡ 1 mod 7 which is 2y3 ≡ 1 mod 7 so y3 = 4.

So all solutions are given by

x ≡ (42)(3)(2) + (35)(5)(2) + (30)(4)(1) ≡ 722 ≡ 92 mod 210

So that the second smallest solution is x = 92 + 210 = 302.

2. Find each of the following.

(a) The least nonnegative residue of (14!)4371 modulo 17.

Solution: By Wilson’s Theorem:

16! ≡ −1 mod 17

(16)(15)14! ≡ −1 mod 17

(−1)(−2)14! ≡ −1 mod 17

(−2)14! ≡ 1 mod 17

(−9)(−2)14! ≡ −9 mod 17

14! ≡ 8 mod 17

By Fermat’s Little Theorem 416 ≡ 1 mod 17 so then:

4371 ≡ (416)2343 ≡ 43 ≡ 64 ≡ 13 mod 17

Thus
(14!)4371 ≡ (8)(13) ≡ 2 mod 17

(b) The least nonnegative residue of 12345 modulo 1236.

Solution: We have:
12345 ≡ (−2)5 ≡ −32 ≡ 1204 mod 1236



3. Find all incongruent solutions, if any, modulo the original modulus, to the following:

(a) 5x ≡ 6 mod 16

Solution: Since gcd (5, 16) = 1 | 6 there is one solution. By testing we find it is x = 14.

(b) 2x ≡ 18 mod 46

Solution: Since gcd (2, 46) = 2 | 18 there are two solutions. By testing one is x = 9 so all
are x = 9 + 46

2 k for k = 0, 1, or specifically x = 9 and x = 32.

(c) 13162x ≡ 2 mod 13163

Solution: Since gcd (13162, 13163) ∤ 2 there are no solutions.

4. Calculate the following. Answers do not need to be simplified!

(a) φ(6!7!)

Solution: The prime factors involved in 6! and 7! are only 2,3,5,7 and so

φ(6!7!) = 6!7!
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(b) σ(1010)

Solution: Since 1010 = 210510 we have

σ(1010) = σ(210)σ(510) =
211 − 1

2− 1

511 − 1

5− 1

(c) τ(10!)

Solution: Since 10! = (10)(9)(8)(7)(6)(5)(4)(3)(2)(1) = 28345271 we have

τ(10!) = (8 + 1)(4 + 1)(2 + 1)(1 + 1)

5. Show that 91 is a Fermat Pseudoprime to the base 3. Note that 91 is not prime!

Solution: Since gcd (3, 91) = 1, Euler’s Theorem tells us that 3φ(91) ≡ 1 mod 91. We find
φ(91) = φ(7 · 13) = (6)(12) = 72 so then to check it’s a Pseudoprime:

391−1 ≡ 390 ≡ 372318 ≡ 318 mod 91

A bit more work to do. Note:

31 ≡ 3 mod 91

32 ≡ 9 mod 91

34 ≡ 81 mod 91

38 ≡ 812 ≡ (−102) ≡ 100 ≡ 9 mod 91

316 ≡ 81 mod 91

and so finally

391−1 ≡ 318 ≡ 31632 ≡ (81)(9) ≡ (−10)(9) ≡ −90 ≡ 1 mod 91

6. Prove that if n ≥ 2 and gcd (6, n) = 1 then φ(3n) = 2φ(2n).

Solution: If gcd (6, n) = 1 then gcd (2, n) = 1 and gcd (3, n) = 1 and so then

φ(3n) = φ(3)φ(n) = 2φ(n)

and
2φ(2n) = 2φ(2)φ(n) = 2φ(n)

So they’re equal.



7. Classify all numbers n for which τ(n) = 12.

Solution: If n = pα1

1 ...p
αk

k then τ(n) = (α1 + 1)...(αk + 1). For this to equal 12 it must be a
factorization of 12 and thus could only be (12) or (2)(6) or (3)(4) or (2)(2)(3).

If it’s (12) then n = p111 .

If it’s (2)(6) then n = p1p
5
2.

If it’s (3)(4) then n = p21p
3
2.

If it’s (2)(2)(3) then n = p1p2p
2
3.

8. Prove (using the definition of congruence) or disprove (by counterexample) each of the following.
Hint: One is true, two are false.

(a) If ac ≡ bc mod m with c 6≡ 0 mod m then a ≡ b mod m.

Solution: False, for example (2)(2) ≡ (5)(2) mod 6 but 2 6≡ 5 mod 6.

(b) If a ≡ b mod m and b ≡ c mod m then a ≡ c mod m.

Solution: True. If a ≡ b mod m and b ≡ c mod m then m | (a − b) and m | (b − c) and so
m | (a− b) + (b− c) so m | (a− c) yielding a ≡ c mod m.

(c) If a ≡ b mod m then m | (a+ b).

Solution: False. For example 1 ≡ 1 mod 7 but 7 ∤ (1 + 1).

9. Suppose n is a perfect number and p is a prime such that pn is also perfect. Prove gcd (p, n) 6= 1.

Solution: Since n and pn are perfect, σ(n) = 2n and σ(pn) = 2pn.

We proceed by contradition: If gcd (p, n) = 1 then

σ(pn) = σ(p)σ(n) = (p+ 1)2n = 2pn+ 2n 6= σ(pn)

a contradiction.

10. Prove that for a fixed k that φ(n) = k can have at most a finite number of solutions.

Solution: Since it’s easier we’ll show that φ(n) ≤ k can have at most a finite number of solutions,
since clearly if φ(n) = k then φ(n) ≤ k.

Suppose pα appears in the prime factorization of n, so then n = pαN where N is the rest. Then:

φ(n) = φ(pαN) = φ(pα)φ(N) ≥ φ(pα) = pα−1(p− 1)

First note that this is greater than or equal to p − 1, so in order to guarantee that φ(n) ≤ k we
must have p− 1 ≤ k or p ≤ k + 1 which means there are only a finite number of different primes
which can appear in the prime factorization of n.

Second observe that this is greater than or equal to pα−1, so in order to guarantee that φ(n) ≤ k

we must have pα−1 ≤ k or α− 1 ≤ logp k or α ≤ 1 + logp k.

Therefore there are only a finite number of primes available and each can be only to a finite
number of powers, yielding only a finite number of possible n.

Explanatory Note: If you’re interested in how this works by example, consider φ(n) ≤ 10. The
first part states that the primes in the prime factorization of n must be less than or equal to 11,
meaning we can only use 2,3,5,7,11. The second part states that the exponent of 2 must be less
than 1+log2(10) ≈ 4.32 (so either 1, 2, 3, 4), the exponent of 3 must be less than 1+log3(10) ≈ 3.10
(so either 1, 2, 3), the exponent of 5 must be less than 1 + log5(10) ≈ 2.43 (so 1, 2), the exponent
of 7 must be less than 1 + log7(10) ≈ 2.18 (so 1, 2), the exponent of 11 must be less than
1 + log11(10) ≈ 1.96 (so 1).


