1. Use the CRT to find the second smallest positive integer solution to the following system:

$$
\begin{aligned}
3 x & \equiv 6 \bmod 15 \\
5 x & \equiv 4 \bmod 6 \\
x+1 & \equiv 2 \bmod 7
\end{aligned}
$$

Solution: We rewrite and solve these individually as:

$$
\begin{array}{r}
x \equiv 2 \bmod 5 \\
x \equiv 2 \bmod 6 \\
x \equiv 1 \bmod 7
\end{array}
$$

Then $M=(5)(6)(7)=210, M_{1}=42, M_{2}=35$ and $M_{3}=30$. We then solve:

$$
\begin{aligned}
& 42 y_{1} \equiv 1 \bmod 5 \text { which is } 2 y_{1} \equiv 1 \bmod 5 \text { so } y_{1}=3 . \\
& 35 y_{2} \equiv 1 \bmod 6 \text { which is } 5 y_{2} \equiv 1 \bmod 6 \text { so } y_{2}=5 . \\
& 30 y_{3} \equiv 1 \bmod 7 \text { which is } 2 y_{3} \equiv 1 \bmod 7 \text { so } y_{3}=4 .
\end{aligned}
$$

So all solutions are given by

$$
x \equiv(42)(3)(2)+(35)(5)(2)+(30)(4)(1) \equiv 722 \equiv 92 \bmod 210
$$

So that the second smallest solution is $x=92+210=302$.
2. Find each of the following.
(a) The least nonnegative residue of (14!)4 4^{371} modulo 17 .

Solution: By Wilson's Theorem:

$$
\begin{aligned}
16! & \equiv-1 \bmod 17 \\
(16)(15) 14! & \equiv-1 \bmod 17 \\
(-1)(-2) 14! & \equiv-1 \bmod 17 \\
(-2) 14! & \equiv 1 \bmod 17 \\
(-9)(-2) 14! & \equiv-9 \bmod 17 \\
14! & \equiv 8 \bmod 17
\end{aligned}
$$

By Fermat's Little Theorem $4^{16} \equiv 1 \bmod 17$ so then:

$$
4^{371} \equiv\left(4^{16}\right)^{23} 4^{3} \equiv 4^{3} \equiv 64 \equiv 13 \bmod 17
$$

Thus

$$
(14!) 4^{371} \equiv(8)(13) \equiv 2 \bmod 17
$$

(b) The least nonnegative residue of 1234^{5} modulo 1236 .

Solution: We have:

$$
1234^{5} \equiv(-2)^{5} \equiv-32 \equiv 1204 \bmod 1236
$$

3. Find all incongruent solutions, if any, modulo the original modulus, to the following:
(a) $5 x \equiv 6 \bmod 16$

Solution: Since $\operatorname{gcd}(5,16)=1 \mid 6$ there is one solution. By testing we find it is $x=14$.
(b) $2 x \equiv 18 \bmod 46$

Solution: Since gcd $(2,46)=2 \mid 18$ there are two solutions. By testing one is $x=9$ so all are $x=9+\frac{46}{2} k$ for $k=0,1$, or specifically $x=9$ and $x=32$.
(c) $13^{162} x \equiv 2 \bmod 13^{163}$

Solution: Since $\operatorname{gcd}\left(13^{162}, 13^{163}\right) \nmid 2$ there are no solutions.
4. Calculate the following. Answers do not need to be simplified!
(a) $\phi(6!7!)$

Solution: The prime factors involved in 6 ! and 7 ! are only $2,3,5,7$ and so

$$
\phi(6!7!)=6!7!\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{5}\right)\left(1-\frac{1}{7}\right)
$$

(b) $\sigma\left(10^{10}\right)$

Solution: Since $10^{10}=2^{10} 5^{10}$ we have

$$
\sigma\left(10^{10}\right)=\sigma\left(2^{10}\right) \sigma\left(5^{10}\right)=\frac{2^{11}-1}{2-1} \frac{5^{11}-1}{5-1}
$$

(c) $\tau(10!)$

Solution: Since $10!=(10)(9)(8)(7)(6)(5)(4)(3)(2)(1)=2^{8} 3^{4} 5^{2} 7^{1}$ we have

$$
\tau(10!)=(8+1)(4+1)(2+1)(1+1)
$$

5. Show that 91 is a Fermat Pseudoprime to the base 3. Note that 91 is not prime!

Solution: Since $\operatorname{gcd}(3,91)=1$, Euler's Theorem tells us that $3^{\phi(91)} \equiv 1 \bmod 91$. We find $\phi(91)=\phi(7 \cdot 13)=(6)(12)=72$ so then to check it's a Pseudoprime:

$$
3^{91-1} \equiv 3^{90} \equiv 3^{72} 3^{18} \equiv 3^{18} \bmod 91
$$

A bit more work to do. Note:

$$
\begin{aligned}
3^{1} & \equiv 3 \bmod 91 \\
3^{2} & \equiv 9 \bmod 91 \\
3^{4} & \equiv 81 \bmod 91 \\
3^{8} & \equiv 81^{2} \equiv\left(-10^{2}\right) \equiv 100 \equiv 9 \bmod 91 \\
3^{16} & \equiv 81 \bmod 91
\end{aligned}
$$

and so finally

$$
3^{91-1} \equiv 3^{18} \equiv 3^{16} 3^{2} \equiv(81)(9) \equiv(-10)(9) \equiv-90 \equiv 1 \bmod 91
$$

6. Prove that if $n \geq 2$ and $\operatorname{gcd}(6, n)=1$ then $\phi(3 n)=2 \phi(2 n)$.

Solution: If $\operatorname{gcd}(6, n)=1$ then $\operatorname{gcd}(2, n)=1$ and $\operatorname{gcd}(3, n)=1$ and so then

$$
\phi(3 n)=\phi(3) \phi(n)=2 \phi(n)
$$

and

$$
2 \phi(2 n)=2 \phi(2) \phi(n)=2 \phi(n)
$$

So they're equal.
7. Classify all numbers n for which $\tau(n)=12$.

Solution: If $n=p_{1}^{\alpha_{1}} \ldots p_{k}^{\alpha_{k}}$ then $\tau(n)=\left(\alpha_{1}+1\right) \ldots\left(\alpha_{k}+1\right)$. For this to equal 12 it must be a factorization of 12 and thus could only be (12) or $(2)(6)$ or $(3)(4)$ or $(2)(2)(3)$.
If it's (12) then $n=p_{1}^{11}$.
If it's $(2)(6)$ then $n=p_{1} p_{2}^{5}$.
If it's (3)(4) then $n=p_{1}^{2} p_{2}^{3}$.
If it's $(2)(2)(3)$ then $n=p_{1} p_{2} p_{3}^{2}$.
8. Prove (using the definition of congruence) or disprove (by counterexample) each of the following. Hint: One is true, two are false.
(a) If $a c \equiv b c \bmod m$ with $c \not \equiv 0 \bmod m$ then $a \equiv b \bmod m$.

Solution: False, for example $(2)(2) \equiv(5)(2) \bmod 6$ but $2 \not \equiv 5 \bmod 6$.
(b) If $a \equiv b \bmod m$ and $b \equiv c \bmod m$ then $a \equiv c \bmod m$.

Solution: True. If $a \equiv b \bmod m$ and $b \equiv c \bmod m$ then $m \mid(a-b)$ and $m \mid(b-c)$ and so $m \mid(a-b)+(b-c)$ so $m \mid(a-c)$ yielding $a \equiv c \bmod m$.
(c) If $a \equiv b \bmod m$ then $m \mid(a+b)$.

Solution: False. For example $1 \equiv 1 \bmod 7$ but $7 \nmid(1+1)$.
9. Suppose n is a perfect number and p is a prime such that $p n$ is also perfect. Prove $\operatorname{gcd}(p, n) \neq 1$.

Solution: Since n and $p n$ are perfect, $\sigma(n)=2 n$ and $\sigma(p n)=2 p n$.
We proceed by contradition: If $\operatorname{gcd}(p, n)=1$ then

$$
\sigma(p n)=\sigma(p) \sigma(n)=(p+1) 2 n=2 p n+2 n \neq \sigma(p n)
$$

a contradiction.
10. Prove that for a fixed k that $\phi(n)=k$ can have at most a finite number of solutions.

Solution: Since it's easier we'll show that $\phi(n) \leq k$ can have at most a finite number of solutions, since clearly if $\phi(n)=k$ then $\phi(n) \leq k$.
Suppose p^{α} appears in the prime factorization of n, so then $n=p^{\alpha} N$ where N is the rest. Then:

$$
\phi(n)=\phi\left(p^{\alpha} N\right)=\phi\left(p^{\alpha}\right) \phi(N) \geq \phi\left(p^{\alpha}\right)=p^{\alpha-1}(p-1)
$$

First note that this is greater than or equal to $p-1$, so in order to guarantee that $\phi(n) \leq k$ we must have $p-1 \leq k$ or $p \leq k+1$ which means there are only a finite number of different primes which can appear in the prime factorization of n.
Second observe that this is greater than or equal to $p^{\alpha-1}$, so in order to guarantee that $\phi(n) \leq k$ we must have $p^{\alpha-1} \leq k$ or $\alpha-1 \leq \log _{p} k$ or $\alpha \leq 1+\log _{p} k$.
Therefore there are only a finite number of primes available and each can be only to a finite number of powers, yielding only a finite number of possible n.
Explanatory Note: If you're interested in how this works by example, consider $\phi(n) \leq 10$. The first part states that the primes in the prime factorization of n must be less than or equal to 11 , meaning we can only use $2,3,5,7,11$. The second part states that the exponent of 2 must be less than $1+\log _{2}(10) \approx 4.32$ (so either $\left.1,2,3,4\right)$, the exponent of 3 must be less than $1+\log _{3}(10) \approx 3.10$ (so either $1,2,3$), the exponent of 5 must be less than $1+\log _{5}(10) \approx 2.43$ (so 1,2), the exponent of 7 must be less than $1+\log _{7}(10) \approx 2.18$ (so 1,2), the exponent of 11 must be less than $1+\log _{11}(10) \approx 1.96$ (so 1).

