Math 406 Exam 3 Summer 2016 Solutions

1. Evaluate each of the following:
(a) $\left(\frac{19}{45}\right)$

Solution: Observe:
$\left(\frac{19}{45}\right)=\left(\frac{45}{19}\right)=\left(\frac{7}{19}\right)=-\left(\frac{19}{7}\right)=-\left(\frac{5}{7}\right)=-\left(\frac{7}{5}\right)=-\left(\frac{2}{5}\right)=-(-1)^{\left(5^{2}-1\right) / 8}=1$
(b) $\left(\frac{1001}{9907}\right)$

Solution: Observe:
Step 1: $\left(\frac{1001}{9907}\right)=\left(\frac{9907}{1001}\right)=\left(\frac{898}{1001}\right)=\left(\frac{2}{1001}\right)\left(\frac{449}{1001}\right)$.
Step 2: $\left(\frac{2}{1001}\right)=\left(\frac{2}{7}\right)\left(\frac{2}{11}\right)\left(\frac{2}{13}\right)=(-1)^{\left(7^{2}-1\right) / 8}(-1)^{\left(11^{2}-1\right) / 8}(-1)^{\left(13^{2}-1\right) / 8}=(1)(-1)(-1)=$ 1.

Step 3: $\left(\frac{449}{1001}\right)=\left(\frac{1001}{449}\right)=\left(\frac{103}{449}\right)=\left(\frac{449}{103}\right)=\left(\frac{37}{103}\right)=\left(\frac{103}{37}\right)=\left(\frac{29}{37}\right)=\left(\frac{37}{29}\right)=\left(\frac{8}{29}\right)=$ $\left(\frac{2}{29}\right)^{3}=\left((-1)^{\left(29^{2}-1\right) / 8}\right)^{3}=-1$.
Finally: $\left(\frac{1001}{9907}\right)=(1)(-1)=-1$
2. A partial table of indices for 2 , a primitive root of 13 is given here:

a	1	2	3	4	5	6	7	8	9	10	11	12
$\operatorname{ind}_{2} a$	12	1	4	2	9	5	11	3	a	b	7	6

(a) Find a and b with justification.

Solution: We have $a \equiv \operatorname{ind}_{2} 9 \equiv \operatorname{ind}_{2}\left(3^{2}\right) \equiv 2 \operatorname{ind}_{2} 3 \equiv 8 \bmod 12$ and $b \equiv \operatorname{ind}_{2} 10 \equiv$ $\operatorname{ind}_{2}(2 \cdot 5) \equiv \operatorname{ind}_{2} 2+\operatorname{ind}_{2} 5 \equiv 1+9 \equiv 10 \bmod 12$.
(b) Use the table to solve the congruence $3^{2 x+1} \equiv 9 \bmod 13$.

Solution: We have:

$$
\begin{aligned}
3^{2 x+1} & \equiv 9 \bmod 13 \\
\operatorname{ind}_{2}\left(3^{2 x+1}\right) & \equiv \operatorname{ind}_{2} 9 \bmod 12 \\
(2 x+1) \operatorname{ind}_{2} 3 & \equiv \operatorname{ind}_{2} 9 \bmod 12 \\
(2 x+1)(4) & \equiv 8 \bmod 12 \\
8 x & \equiv 4 \bmod 12 \\
2 x & \equiv 1 \bmod 3 \\
x & \equiv 2 \bmod 3
\end{aligned}
$$

(c) Use the table to solve the congruence $7 x^{5} \equiv 3 \bmod 13$.

Solution: We have

$$
\begin{aligned}
7 x^{5} & \equiv 3 \bmod 13 \\
\operatorname{ind}_{2}\left(7 x^{5}\right) & \equiv \operatorname{ind}_{2} 3 \bmod 12 \\
\operatorname{ind}_{2} 7+5 \operatorname{ind}_{2} x & \equiv \operatorname{ind}_{2} 3 \bmod 12 \\
11+5 \operatorname{ind}_{2} x & \equiv 4 \bmod 12 \\
5 \operatorname{ind}_{2} x & \equiv 5 \bmod 12 \\
\operatorname{ind}_{2} x & \equiv 1 \bmod 12 \\
x & \equiv 2 \bmod 13
\end{aligned}
$$

3. For each $1 \leq a \leq 15$ with $\operatorname{gcd}(a, 15)=1$ find and justify $\operatorname{ord}_{15} a$.

Solution: The orders must divide $\phi(15)=8$ so the options are $1,2,4,8$.

$$
\begin{aligned}
& 1^{1} \equiv 1 \bmod 15 \text { so } \operatorname{ord}_{15} 1=1 \\
& 2^{1} \equiv 2 \bmod 15,2^{2} \equiv 4 \bmod 15,2^{4} \equiv 1 \bmod 15 \text { so } \operatorname{ord}_{15} 2=4 \\
& 4^{1} \equiv 4 \bmod 15,4^{2} \equiv 1 \bmod 15 \text { so } \operatorname{ord}_{15} 4=2 \\
& 7^{1} \equiv 7 \bmod 15,7^{2} \equiv 4 \bmod 15,7^{4} \equiv 1 \bmod 15 \text { so } \operatorname{ord}_{15} 4=4 \\
& 8^{1} \equiv 8 \bmod 15,8^{2} \equiv 4 \bmod 15,8^{4} \equiv 1 \bmod 15 \text { so } \operatorname{ord}_{15} 8=4 \\
& 11^{1} \equiv 11 \bmod 15,11^{2} \equiv 1 \bmod 15 \text { so } \operatorname{ord}_{15} 11=2 \\
& 13^{1} \equiv 13 \bmod 15,13^{2} \equiv 4 \bmod 15,13^{4} \equiv 1 \bmod 15 \text { so } \operatorname{ord}_{15} 13=4 \\
& 14^{1} \equiv 14 \bmod 15,14^{2} \equiv 1 \bmod 15 \text { so } \operatorname{ord}_{15} 14=2
\end{aligned}
$$

4. Suppose that Bob's public key is $(e, n)=(3,33)$.
(a) Encrypt the message CAFE using 1-character blocks.

Solution: We have:
C has $P=2$ so $C \equiv 2^{3} \equiv 08 \bmod 33$.
A has $P=0$ so $C \equiv 0^{3} \equiv 00 \bmod 33$.
F has $P=5$ so $C \equiv 5^{3} \equiv 26 \bmod 33$.
E has $P=4$ so $C \equiv 4^{3} \equiv 31 \bmod 33$.
So the ciphertext is 08002631 .
(b) Since you are so smart you can factor n and find $\phi(n)$. Do so, then calculate Bob's private key d.
Solution: We have $\phi(33)=\phi(3) \phi(11)=(2)(10)=20$ we then need to solve $3 d \equiv$ $1 \bmod 20$. The answer is obviously $d \equiv 7 \bmod 20$.
(c) Decrypt the single ciphertext 04.

Solution: We have $04^{7} \equiv 16 \bmod 33$ so the message was Q .
5. The ciphertext MOOHCHHXBOO was created using an affine cipher. Perform frequency analysis and decrypt.
Solution: The most common letter is 0 which probably represents E and the second most common letter is H which probably represents T. Thus we solve:

$$
\begin{aligned}
4 a+b & \equiv 14 \bmod 26 \\
19 a+b & \equiv 7 \bmod 26 \\
15 a & \equiv-7 \bmod 26 \\
(3)(5) a & \equiv-7 \bmod 26 \\
(9)(3)(5) a & \equiv(9)(-7) \bmod 26 \\
5 a & \equiv 15 \bmod 26 \\
a & \equiv 3 \bmod 26
\end{aligned}
$$

So then $4(3)+b \equiv 14 \bmod 26$ so that $b \equiv 2 \bmod 26$. We find $a^{-1} \equiv 9 \bmod 26$ and decrypt the letters we don't know:

M has $C=12$ so $P \equiv 9(12-2) \equiv 12 \bmod 26$ so M .
C has $C=2$ so $P \equiv 9(2-2) \equiv 0 \bmod 26$ so A.
X has $C=23$ so $P \equiv 9(23-2) \equiv 7 \bmod 26$ so H .
B has $C=1$ so $P \equiv 9(1-2) \equiv 17 \bmod 26$ so R.
So the message is MEETATTHREE.
6. Determine whether 15 is a quadratic residue of 17 :
(a) Using Euler's Criterion.

Solution:

$$
\left(\frac{15}{17}\right) \equiv(15)^{(17-1) / 2} \equiv(-2)^{8} \equiv 256 \equiv 1 \bmod 17
$$

so yes.
(b) Using Gauss' Lemma.

Solution: $\{1(15), 2(15), \ldots, 8(15)\} \equiv\{15,13,11,9,7,5,3,1\} \bmod 17$ of which $s=4$ are greater than $\frac{17}{2}=8.5$. Thus $\left(\frac{15}{17}\right)=(-1)^{4}=1$ so yes.
7. Prove that if $\operatorname{ord}_{n} a=h k$ then $\operatorname{ord}_{n}\left(a^{h}\right)=k$.

Solution:

By a theorem from class:

$$
\operatorname{ord}_{n}\left(a^{h}\right)=\frac{\operatorname{ord}_{n} a}{\operatorname{gcd}\left(\operatorname{ord}_{n} a, h\right)}=\frac{h k}{\operatorname{gcd}(h k, h)}=\frac{h k}{h}=k
$$

8. Let r be a primitive root for an odd prime p. Prove that $\operatorname{ind}_{r}(p-1)=\frac{1}{2}(p-1)$.

Solution: This was HW9.4 \#8 so the solution is there.
9. Suppose p and q are distinct odd primes. Prove that there is always some n with $\left(\frac{n}{p q}\right)=-1$.

Solution:
We know that $\left(\frac{n}{p q}\right)=\left(\frac{n}{p}\right)\left(\frac{n}{q}\right)$. Let n_{1} be a QR of p which exists because there are $\frac{p-1}{2} \mathrm{QR}$ of p and $\frac{p-1}{2}$ QNR of p and let n_{2} be a QNR of q which exists for similar reasons. Then choose n satisfying

$$
\begin{aligned}
& n \equiv n_{1} \bmod p \\
& n \equiv n_{2} \bmod q
\end{aligned}
$$

which can be done by the CRT. Then

$$
\left(\frac{n}{p q}\right)=\left(\frac{n}{p}\right)\left(\frac{n}{q}\right)=\left(\frac{n_{1}}{p}\right)\left(\frac{n_{2}}{q}\right)=(1)(-1)=-1
$$

10. Suppose p is an odd prime such that there is some a so that a is a quadratic residue of p but $2 a$ is a quadratic non-residue of p. Prove that $p \equiv \pm 3 \bmod 8$.
Solution: If a is a QR of p but $2 a$ is a QNR of p then $\left(\frac{a}{p}\right)=1$ and $\left(\frac{2 a}{p}\right)=-1$. However $\left(\frac{2 a}{p}\right)=\left(\frac{2}{p}\right)\left(\frac{a}{p}\right)$ so then $\left(\frac{2}{p}\right)=-1$.
We could only have $p \equiv \pm 3 \bmod 8$ or $p \equiv \pm 1 \bmod 8$.

- If $p \equiv \pm 3 \bmod 8$ then $p=8 k \pm 3$ so then $\left(\frac{2}{p}\right)=(-1)^{\left(p^{2}-1\right) / 8}=(-1)^{\left(64 k^{2} \pm 48 k+9-1\right) / 8}=-1$ as desired.
- If $p \equiv \pm 1 \bmod 8$ then $p=8 k \pm 1$ so then $\left(\frac{2}{p}\right)=(-1)^{\left(p^{2}-1\right) / 8}=(-1)^{\left(64 k^{2} \pm 16 k+1-1\right) / 8}=1$.

