Math 406 Final Spring 2020

1. Given $A=6259162$ and $B=206346$.
(a) Find the prime factorizations of A and B and use them to find $\operatorname{gcd}(A, B)$.
(b) Find $\operatorname{gcd}(A, B)$ using the Euclidean Algorithm.
2. Use the Chinese Remainder Theorem to find the smallest and second smallest nonnegative solutions to the system:

$$
\begin{aligned}
& x \equiv 2 \bmod 5 \\
& x \equiv 5 \bmod 8 \\
& x \equiv 15 \bmod 17
\end{aligned}
$$

3. For each of $n=19,309,5672,37699$ find the exact value p_{n} of the $n^{\text {th }}$ prime (however you want) and then approximate value a_{n} of the $n^{\text {th }}$ prime (using the Prime Number Theorem Corollary). Calculate the percentage error

$$
\frac{100\left|p_{n}-a_{n}\right|}{p_{n}}
$$

for each.
4. Find all incongruent solutions mod 124 to the linear system:

$$
52 x \equiv 4 \bmod 124
$$

5. Find all primitive roots for $n=13$ as follows: First find the smallest positive primitive root. Then use the Theorem from class which yields all the remaining ones. Final answers should be least nonnegative residues.
6. It's a fact that $r=6$ is a primitive root $\bmod 11$.
(a) Use this to construct a table of indices for this primitive root.
(b) Use the table of indices to solve the equation: $x^{8} \equiv 5 \bmod 11$. Your answer(s) should be $\bmod 11$.
(c) Use the table of indices to solve the equation: $3^{x} \equiv 5 \bmod 11$. Your answer(s) should be $\bmod 10$.
7. Calculate the following Jacobi symbols:
(a) $\left(\frac{1141}{667}\right)$
(b) $\left(\frac{1141}{51127}\right)$

You know that Bob's public key is $(e, n)=(1655,11639)$. Bob thinks this is secure because he doesn't believe that his n can be factored easily. Factor $n=11639$, find $\phi(n)$, find d and then decrypt the message. Be clear about the steps you take.
9. Determine if each of the following sets is well-ordered. If a set is not well-ordered give evidence. If a set is well-ordered no evidence is required.
(a) $\{0\} \cup\left\{\left.\frac{n+4}{n} \right\rvert\, n \in \mathbb{Z}^{+}\right\}$
(b) $2 \mathbb{Z}$
(c) $\left\{\lfloor\sqrt{n}\rfloor \mid n \in \mathbb{Z}^{+}\right\}$
10. Suppose $p \geq 11$ is an unknown prime. Find all solutions to $x^{2}+8 \equiv 6 x \bmod p$. Note that your solutions will be mod p.
11. Consider the inequality:

$$
3^{n}<n!
$$

(a) Find the smallest positive integer n_{0} for which this is true. Do this however you wish.
(b) Prove by induction that $3^{n}<n$! for all $n \geq n_{0}$.
12. Suppose p is an odd prime such that there is some a so that a is a quadratic residue of p but [15 pts] $2 a$ is a quadratic non-residue of p. Prove that $p \equiv \pm 3 \bmod 8$.
13. Prove that for $a, b \in \mathbb{Z}$ and $n \in \mathbb{Z}^{+}$that if $a^{n} \mid b^{n}$ then $a \mid b$.
14. Prove that if $a, b, c \in \mathbb{Z}$ with $\operatorname{gcd}(a, b)=1$ and $c \mid(a+b)$ then $\operatorname{gcd}(c, a)=\operatorname{gcd}(c, b)=1$.

