1. Given $A = 6259162$ and $B = 206346$. [15 pts]

 (a) Find the prime factorizations of A and B and use them to find $\gcd (A, B)$.
 (b) Find $\gcd (A, B)$ using the Euclidean Algorithm.

2. Use the Chinese Remainder Theorem to find the smallest and second smallest nonnegative solutions to the system: [15 pts]

 $x \equiv 2 \pmod{5}$
 $x \equiv 5 \pmod{8}$
 $x \equiv 15 \pmod{17}$

3. For each of $n = 19, 309, 5672, 37699$ find the exact value p_n of the n^{th} prime (however you want) and then approximate value a_n of the n^{th} prime (using the Prime Number Theorem Corollary). Calculate the percentage error

 $$\frac{100 |p_n - a_n|}{p_n}$$

 for each. [10 pts]

4. Find all incongruent solutions mod 124 to the linear system: [10 pts]

 $$52x \equiv 4 \pmod{124}$$

5. Find all primitive roots for $n = 13$ as follows: First find the smallest positive primitive root. Then use the Theorem from class which yields all the remaining ones. Final answers should be least nonnegative residues. [15 pts]

6. It’s a fact that $r = 6$ is a primitive root mod 11. [15 pts]

 (a) Use this to construct a table of indices for this primitive root.
 (b) Use the table of indices to solve the equation: $x^8 \equiv 5 \pmod{11}$. Your answer(s) should be mod 11.
 (c) Use the table of indices to solve the equation: $3^x \equiv 5 \pmod{11}$. Your answer(s) should be mod 10.

7. Calculate the following Jacobi symbols: [15 pts]

 (a) $\left(\frac{1141}{667} \right)$
 (b) $\left(\frac{1141}{7127} \right)$
8. Suppose you intercept the following ciphertext from Alice to Bob:

\[2982 \ 2237 \ 3239 \ 11364 \ 8541 \ 7043 \]

You know that Bob’s public key is \((e,n) = (1655, 11639)\). Bob thinks this is secure because he doesn’t believe that his \(n\) can be factored easily. Factor \(n = 11639\), find \(\phi(n)\), find \(d\) and then decrypt the message. Be clear about the steps you take.

9. Determine if each of the following sets is well-ordered. If a set is not well-ordered give evidence. If a set is well-ordered no evidence is required.

(a) \(\{0\} \cup \left\{ \frac{n+4}{n} \bigg| n \in \mathbb{Z}^+ \right\} \)
(b) \(2\mathbb{Z}\)
(c) \(\left\{ \lfloor \sqrt{n} \rfloor \bigg| n \in \mathbb{Z}^+ \right\} \)

10. Suppose \(p \geq 11\) is an unknown prime. Find all solutions to \(x^2 + 8 \equiv 6x \mod p\). Note that your solutions will be mod \(p\).

11. Consider the inequality:

\[3^n < n! \]

(a) Find the smallest positive integer \(n_0\) for which this is true. Do this however you wish.
(b) Prove by induction that \(3^n < n!\) for all \(n \geq n_0\).

12. Suppose \(p\) is an odd prime such that there is some \(a\) so that \(a\) is a quadratic residue of \(p\) but \(2a\) is a quadratic non-residue of \(p\). Prove that \(p \equiv \pm 3 \mod 8\).

13. Prove that for \(a, b \in \mathbb{Z}\) and \(n \in \mathbb{Z}^+\) that if \(a^n \mid b^n\) then \(a \mid b\).

14. Prove that if \(a, b, c \in \mathbb{Z}\) with \(\gcd(a, b) = 1\) and \(c \mid (a + b)\) then \(\gcd(c, a) = \gcd(c, b) = 1\).