
Math 406 Final Spring 2020

1. Given A = 6259162 and B = 206346. [15 pts]

(a) Find the prime factorizations of A and B and use them to find gcd (A,B).

Solution:
We have A = 2 · 72 · 13 · 173 and B = 2 · 3 · 7 · 173.

Thus gcd (6259162, 206346) = 2 · 7 · 173.

(b) Find gcd (A,B) using the Euclidean Algorithm.

Solution:
We have:

6259162 = 30(206346) + 68782

206346 = 3(68782) + 0

Thus gcd (6259162, 206346) = 68782.



2. Use the Chinese Remainder Theorem to find the smallest and second smallest nonnegative [15 pts]
solutions to the system:

x ≡ 2 mod 5

x ≡ 5 mod 8

x ≡ 15 mod 17

Solution:
First we solve the three congruences:

• First:

(8)(17)y1 ≡ 1 mod 5

1y1 ≡ 1 mod 5

y1 ≡ 1 mod 5

• Second:

(5)(17)y2 ≡ 1 mod 8

5y2 ≡ 1 mod 8

y2 ≡ 5 mod 8

• Third:

(5)(8)y3 ≡ 1 mod 17

6y3 ≡ 1 mod 17

y3 ≡ 3 mod 17

We then have:

x ≡ (2)(8)(17)(1) + (5)(5)(17)(5) + (15)(5)(8)(3) ≡ 4197 ≡ 117 mod 680

for the smallest, and the second smallest would be 797.



3. For each of n = 19, 309, 5672, 37699 find the exact value pn of the nth prime (however you [10 pts]
want) and then approximate value an of the nth prime (using the Prime Number Theorem
Corollary). Calculate the percentage error

100 |pn − an|
pn

for each.

Solution:
We have:

• For n = 19 we have pn = 67 and an = 55.94434060416236.

Then the percentage error is:

100|67− 55.94434060416236|
67

= 16.500984172891997

• For n = 309 we have pn = 2039 and an = 1771.6024545614034.

Then the percentage error is:

100|2039− 1771.6024545614034|
2039

= 13.114151321167071

• For n = 5672 we have pn = 55889 and an = 49024.78097089825.

Then the percentage error is:

100|55889− 49024.78097089825|
55889

= 12.281878418117602

• For n = 37699 we have pn = 449929 and an = 397249.0221764303.

Then the percentage error is:

100|449929− 397249.0221764303|
449929

= 11.708509081114947



4. Find all incongruent solutions mod 124 to the linear system: [10 pts]

52x ≡ 4 mod 124

Solution:
Since gcd (52, 124) = 4 | 4 we know there are 4 incongruent solutions. We can simplify the
equation by dividing:

52x ≡ 4 mod 124

13x ≡ 1 mod 31

This has single solution x0 ≡ 12 mod 31 Thus a complete set of incongruent solutions is:

x ≡ 12, 43, 74, 105 mod 124

Note: If not trivial, the single solution can be found by first noting the following where the
first line comes from finding the gcd as a linear combination of two values, in this case since
gcd (13, 31) = 1:

(12)(13) + (−5)(31) = 1

(12)(13) + (−5)(31) = 1

(12)(13) ≡ 1 mod 31



5. Find all primitive roots for n = 13 as follows: First find the smallest positive primitive root. [15 pts]
Then use the Theorem from class which yields all the remaining ones. Final answers should
be least nonnegative residues.

Solution:
The smallest positive primite root is r = 2. We then know that 2u is a primitive root iff
gcd (u, φ(13)) = 1. Since φ(13) = 12 we need all u with gcd (u, 12) = 1. The u satisfying this
are u = 1, 5, 7, 11. So we simplify:

21 ≡ 2 mod 13

25 ≡ 6 mod 13

27 ≡ 11 mod 13

211 ≡ 7 mod 13

Thus the primitive roots are 2,6,7,11.



6. It’s a fact that r = 6 is a primitive root mod 11. [15 pts]

(a) Use this to construct a table of indices for this primitive root.

Solution:
We have the following:

x 1 2 3 4 5 6 7 8 9 10
ind6x 0 9 2 8 6 1 3 7 4 5

(b) Use the table of indices to solve the equation: x8 ≡ 5 mod 11. Your answer(s) should be
mod 11.

Solution:
We have the following:

x8 ≡ 5 mod 11

8ind6x ≡ ind65 mod φ(11)

8ind6x ≡ 6 mod 10

ind6x ≡ 2, 7 mod 10

x ≡ 3, 8 mod 11

(c) Use the table of indices to solve the equation: 3x ≡ 5 mod 11. Your answer(s) should be
mod 10.

Solution:
We have the following:

3x ≡ 5 mod 11

x ind63 ≡ ind65 mod φ(11)

x(2) ≡ 6 mod 10

x ≡ 3, 8 mod 10



7. Calculate the following Jacobi symbols: [15 pts]

Solution Note: These solution were autogenerated recursively in Python and may take a
minute to understand. R = Reduce numerator mod denominator, QR = Quadratic reciprocity,
2 = 2-rule.

(a)
(
1141
667

)
Solution:(
1141
667

)
=
R

(
474
667

)
We factor the denominator as 667 = 231291:

Ô
(
474
23

)
=
R

(
14
23

)
We factor the numerator as 14 = 2171:

Ô
(

2
23

)
=
2

1

Ô
(

7
23

)
=
QR
−
(
23
7

)
=
R
−
(
2
7

)
=
2
−1

Ô
(
474
29

)
=
R

(
10
29

)
We factor the numerator as 10 = 2151:

Ô
(

2
29

)
=
2
−1

Ô
(

5
29

)
=
QR

(
29
5

)
=
R

(
4
5

)
We factor the numerator as 4 = 22:

Ô
(
2
5

)2
=
2

(−1)2 = 1

Final answer equals product of ±1s: 1

(b)
(

1141
51127

)
Solution:(
85583
51127

)
=
R

(
34456
51127

)
We factor the denominator as 51127 = 291411431:

Ô
(
34456
29

)
=
R

(
4
29

)
We factor the numerator as 4 = 22:

Ô
(

2
29

)2
=
2

(−1)2 = 1

Ô
(
34456
41

)
=
R

(
16
41

)
We factor the numerator as 16 = 24:

Ô
(

2
41

)4
=
2

14 = 1

Ô
(
34456
43

)
=
R

(
13
43

)
=
QR

(
43
13

)
=
R

(
4
13

)
We factor the numerator as 4 = 22:

Ô
(

2
13

)2
=
2

(−1)2 = 1

Final answer equals product of ±1s: 1



8. Suppose you intercept the following ciphertext from Alice to Bob: [15 pts]

2982 2237 3239 11364 8541 7043

You know that Bob’s public key is (e, n) = (1655, 11639). Bob thinks this is secure because he
doesn’t believe that his n can be factored easily. Factor n = 11639, find φ(n), find d and then
decrypt the message. Be clear about the steps you take.

Solution:
We factor 11639 = (103)(113) and so φ(11639) = (103 − 1)(113 − 1) = 11424. We solve
1655d ≡ 1 mod 11424 and get d ≡ 6599 mod 11424. We use this to decrypt:

186599 ≡ 18 mod 11639→ AS

7176599 ≡ 717 mod 11639→ HR

20136599 ≡ 2013 mod 11639→ UN

18126599 ≡ 1812 mod 11639→ SM

36599 ≡ 3 mod 11639→ AD

11246599 ≡ 1124 mod 11639→ LY

So the plaintext is:

ASHRUNSMADLY



9. Determine if each of the following sets is well-ordered. If a set is not well-ordered give evidence. [15 pts]
If a set is well-ordered no evidence is required.

(a) {0} ∪
{

n+4
n

∣∣∣∣n ∈ Z+

}
Solution:
Not well-ordered, the set without 0 has no least element.

(b) 2Z
Solution:
Not well-ordered, for example the set itself has no least element.

(c)

{
b
√
nc

∣∣∣∣n ∈ Z+

}
Solution:
Well-ordered.



10. Suppose p ≥ 11 is an unknown prime. Find all solutions to x2 + 8 ≡ 6x mod p. Note that [15 pts]
your solutions will be mod p.

Solution:
Observe that for a solution x we would have:

x2 + 8 ≡ 6x mod p

x2 − 6x+ 8 ≡ 0 mod p

(x− 2)(x− 4) ≡ 0 mod p

Since p is prime we then have either p | (x − 2) or p | (x − 4) yielding solutions x ≡ 2 mod p
and x ≡ 4 mod p.



11. Consider the inequality: [15 pts]
3n < n!

(a) Find the smallest positive integer n0 for which this is true. Do this however you wish.

Solution:
Testing gives n0 = 7.

(b) Prove by induction that 3n < n! for all n ≥ n0.

Solution:
The base case was proven in part (a).

For the inductive step we assume that 3k < k! for k ≥ 7 and claim that 3k+1 < (k + 1)!.

To see this note that:

3k+1 = (3)3k < 3k! < (k + 1)k! = (k + 1)!

where the final inequality holds becase 3 < k + 1 because k ≥ 7.



12. Suppose p is an odd prime such that there is some a so that a is a quadratic residue of p but [15 pts]
2a is a quadratic non-residue of p. Prove that p ≡ ±3 mod 8.

Solution:
If a is a QR of p but 2a is a QNR of p then

(
a
p

)
= 1 and

(
2a
p

)
= −1. However

(
2a
p

)
=

(
2
p

)(
a
p

)
so then

(
2
p

)
= −1.

We could only have p ≡ ±3 mod 8 or p ≡ ±1 mod 8.

• If p ≡ ±3 mod 8 then p = 8k ± 3 so then
(

2
p

)
= (−1)(p

2−1)/8 = (−1)(64k
2±48k+9−1)/8 = −1

as desired.

• If p ≡ ±1 mod 8 then p = 8k ± 1 so then
(

2
p

)
= (−1)(p

2−1)/8 = (−1)(64k
2±16k+1−1)/8 = 1.



13. Prove that for a, b ∈ Z and n ∈ Z+ that if an | bn then a | b. [15 pts]

Solution:
Suppose that an | bn. Then kan = bn for some k ∈ Z.

For any prime that appears in the prime factorization of k, that prime must appear with a
power which is a multiple of n, since it appears in bn with a power which is a multiple of n
and if it appears in an it must also be with a power which is a multiple of n.

But this means k = pc1n1 ...pcmn
m is the prime factorization of k and so k = (pc11 ...p

cm
m )

n
is a

perfect square, meaning
√
k ∈ Z+, so that a

√
k = b and a | b.



14. Prove that if a, b, c ∈ Z with gcd (a, b) = 1 and c
∣∣(a+ b) then gcd (c, a) = gcd (c, b) = 1. [15 pts]

Solution:
We’ll show that gcd (c, a) = 1. Suppose d | c and d | a. Since d | c and c | (a + b) we have
d | (a + b). This, coupled with the fact that d | a, implies that d | b. However gcd (a, b) = 1
and so d = 1.

The proof for gcd (c, b) = 1 is identical, mutatis mutandi.


