1. Given $A=6259162$ and $B=206346$.
(a) Find the prime factorizations of A and B and use them to find $\operatorname{gcd}(A, B)$.

Solution:

We have $A=2 \cdot 7^{2} \cdot 13 \cdot 17^{3}$ and $B=2 \cdot 3 \cdot 7 \cdot 17^{3}$.
Thus $\operatorname{gcd}(6259162,206346)=2 \cdot 7 \cdot 17^{3}$.
(b) Find $\operatorname{gcd}(A, B)$ using the Euclidean Algorithm.

Solution:

We have:

$$
\begin{aligned}
6259162 & =30(206346)+68782 \\
206346 & =3(68782)+0
\end{aligned}
$$

Thus gcd $(6259162,206346)=68782$.
2. Use the Chinese Remainder Theorem to find the smallest and second smallest nonnegative [15 pts] solutions to the system:

$$
\begin{aligned}
& x \equiv 2 \bmod 5 \\
& x \equiv 5 \bmod 8 \\
& x \equiv 15 \bmod 17
\end{aligned}
$$

Solution:

First we solve the three congruences:

- First:

$$
\begin{aligned}
(8)(17) y_{1} & \equiv 1 \bmod 5 \\
1 y_{1} & \equiv 1 \bmod 5 \\
y_{1} & \equiv 1 \bmod 5
\end{aligned}
$$

- Second:

$$
\begin{aligned}
(5)(17) y_{2} & \equiv 1 \bmod 8 \\
5 y_{2} & \equiv 1 \bmod 8 \\
y_{2} & \equiv 5 \bmod 8
\end{aligned}
$$

- Third:

$$
\begin{aligned}
(5)(8) y_{3} & \equiv 1 \bmod 17 \\
6 y_{3} & \equiv 1 \bmod 17 \\
y_{3} & \equiv 3 \bmod 17
\end{aligned}
$$

We then have:

$$
x \equiv(2)(8)(17)(1)+(5)(5)(17)(5)+(15)(5)(8)(3) \equiv 4197 \equiv 117 \bmod 680
$$

for the smallest, and the second smallest would be 797.
3. For each of $n=19,309,5672,37699$ find the exact value p_{n} of the $n^{\text {th }}$ prime (however you [10 pts] want) and then approximate value a_{n} of the $n^{\text {th }}$ prime (using the Prime Number Theorem Corollary). Calculate the percentage error

$$
\frac{100\left|p_{n}-a_{n}\right|}{p_{n}}
$$

for each.

Solution:

We have:

- For $n=19$ we have $p_{n}=67$ and $a_{n}=55.94434060416236$.

Then the percentage error is:

$$
\frac{100|67-55.94434060416236|}{67}=16.500984172891997
$$

- For $n=309$ we have $p_{n}=2039$ and $a_{n}=1771.6024545614034$.

Then the percentage error is:

$$
\frac{100|2039-1771.6024545614034|}{2039}=13.114151321167071
$$

- For $n=5672$ we have $p_{n}=55889$ and $a_{n}=49024.78097089825$.

Then the percentage error is:

$$
\frac{100|55889-49024.78097089825|}{55889}=12.281878418117602
$$

- For $n=37699$ we have $p_{n}=449929$ and $a_{n}=397249.0221764303$.

Then the percentage error is:

$$
\frac{100|449929-397249.0221764303|}{449929}=11.708509081114947
$$

4. Find all incongruent solutions mod 124 to the linear system:

$$
52 x \equiv 4 \bmod 124
$$

Solution:

Since gcd $(52,124)=4 \mid 4$ we know there are 4 incongruent solutions. We can simplify the equation by dividing:

$$
\begin{array}{r}
52 x \equiv 4 \bmod 124 \\
13 x \equiv 1 \bmod 31
\end{array}
$$

This has single solution $x_{0} \equiv 12 \bmod 31$ Thus a complete set of incongruent solutions is:

$$
x \equiv 12,43,74,105 \bmod 124
$$

Note: If not trivial, the single solution can be found by first noting the following where the first line comes from finding the gcd as a linear combination of two values, in this case since $\operatorname{gcd}(13,31)=1$:

$$
\begin{aligned}
(12)(13)+(-5)(31) & =1 \\
(12)(13)+(-5)(31) & =1 \\
(12)(13) & \equiv 1 \bmod 31
\end{aligned}
$$

5. Find all primitive roots for $n=13$ as follows: First find the smallest positive primitive root. [15 pts] Then use the Theorem from class which yields all the remaining ones. Final answers should be least nonnegative residues.

Solution:

The smallest positive primite root is $r=2$. We then know that 2^{u} is a primitive root iff $\operatorname{gcd}(u, \phi(13))=1$. Since $\phi(13)=12$ we need all u with $\operatorname{gcd}(u, 12)=1$. The u satisfying this are $u=1,5,7,11$. So we simplify:

$$
\begin{aligned}
2^{1} & \equiv 2 \bmod 13 \\
2^{5} & \equiv 6 \bmod 13 \\
2^{7} & \equiv 11 \bmod 13 \\
2^{11} & \equiv 7 \bmod 13
\end{aligned}
$$

Thus the primitive roots are $2,6,7,11$.
6. It's a fact that $r=6$ is a primitive root $\bmod 11$.
(a) Use this to construct a table of indices for this primitive root.

Solution:

We have the following:

x	1	2	3	4	5	6	7	8	9	10
$\operatorname{ind}_{6} x$	0	9	2	8	6	1	3	7	4	5

(b) Use the table of indices to solve the equation: $x^{8} \equiv 5 \bmod 11$. Your answer(s) should be $\bmod 11$.

Solution:

We have the following:

$$
\begin{aligned}
x^{8} & \equiv 5 \bmod 11 \\
8 \operatorname{ind}_{6} x & \equiv \operatorname{ind}_{6} 5 \bmod \phi(11) \\
8 \operatorname{ind}_{6} x & \equiv 6 \bmod 10 \\
\operatorname{ind}_{6} x & \equiv 2,7 \bmod 10 \\
x & \equiv 3,8 \bmod 11
\end{aligned}
$$

(c) Use the table of indices to solve the equation: $3^{x} \equiv 5 \bmod 11$. Your answer(s) should be $\bmod 10$.

Solution:

We have the following:

$$
\begin{aligned}
3^{x} & \equiv 5 \bmod 11 \\
x \operatorname{ind}_{6} 3 & \equiv \operatorname{ind}_{6} 5 \bmod \phi(11) \\
x(2) & \equiv 6 \bmod 10 \\
x & \equiv 3,8 \bmod 10
\end{aligned}
$$

Solution Note: These solution were autogenerated recursively in Python and may take a minute to understand. $R=$ Reduce numerator mod denominator, $Q R=$ Quadratic reciprocity, $2=2$-rule.
(a) $\left(\frac{1141}{667}\right)$

Solution:

$$
\left(\frac{1141}{667}\right)=\left(\frac{474}{667}\right)
$$

We factor the denominator as $667=23^{1} 29^{1}$:
$\rightarrow\left(\frac{474}{23}\right)=\left(\frac{14}{23}\right)$
We factor the numerator as $14=2^{1} 7^{1}$:
$\rightarrow\left(\frac{2}{23}\right)=1$
$\rightarrow\left(\frac{7}{23}\right) \underset{Q R}{=}-\left(\frac{23}{7}\right) \underset{R}{\bar{R}}-\left(\frac{2}{7}\right) \underset{2}{\overline{2}}-1$
$\rightarrow\left(\frac{474}{29}\right)=\left(\frac{10}{29}\right)$
We factor the numerator as $10=2^{1} 5^{1}$:
$\rightarrow\left(\frac{2}{29}\right) \underset{2}{=}-1$
$\rightarrow\left(\frac{5}{29}\right)_{Q R}=\left(\frac{29}{5}\right)=\left(\frac{4}{5}\right)$
We factor the numerator as $4=2^{2}$:
$\rightarrow\left(\frac{2}{5}\right)^{2}=(-1)^{2}=1$
Final answer equals product of ± 1 s: 1
(b) $\left(\frac{1141}{51127}\right)$

Solution:

$$
\left(\frac{85583}{51127}\right)=\left(\frac{34456}{51127}\right)
$$

We factor the denominator as $51127=29^{1} 41^{1} 43^{1}$:
$\rightarrow\left(\frac{34456}{29}\right)=\left(\frac{4}{29}\right)$
We factor the numerator as $4=2^{2}$:
$\rightarrow\left(\frac{2}{29}\right)^{2} \underset{2}{=}(-1)^{2}=1$
$\rightarrow\left(\frac{34456}{41}\right)=\left(\frac{16}{41}\right)$
We factor the numerator as $16=2^{4}$:
$\rightarrow\left(\frac{2}{41}\right)^{4}=1^{4}=1$
$\rightarrow\left(\frac{34456}{43}\right) \underset{R}{\bar{R}}\left(\frac{13}{43}\right) \underset{Q R}{=}\left(\frac{43}{13}\right)=\left(\frac{4}{13}\right)$
We factor the numerator as $4=2^{2}$:
$\rightarrow\left(\frac{2}{13}\right)^{2} \underset{2}{=}(-1)^{2}=1$
Final answer equals product of ± 1 s: 1

```
29822237 323911364 85417043
```

You know that Bob's public key is $(e, n)=(1655,11639)$. Bob thinks this is secure because he doesn't believe that his n can be factored easily. Factor $n=11639$, find $\phi(n)$, find d and then decrypt the message. Be clear about the steps you take.

Solution:

We factor $11639=(103)(113)$ and so $\phi(11639)=(103-1)(113-1)=11424$. We solve $1655 d \equiv 1 \bmod 11424$ and get $d \equiv 6599 \bmod 11424$. We use this to decrypt:

$$
\begin{aligned}
18^{6599} \equiv 18 \bmod 11639 & \rightarrow \mathrm{AS} \\
717^{6599} \equiv 717 \bmod 11639 & \rightarrow \mathrm{HR} \\
2013^{6599} \equiv 2013 \bmod 11639 & \rightarrow \mathrm{UN} \\
1812^{6599} \equiv 1812 \bmod 11639 & \rightarrow \mathrm{SM} \\
3^{6599} \equiv 3 \bmod 11639 & \rightarrow \mathrm{AD} \\
1124^{6599} \equiv 1124 \bmod 11639 & \rightarrow \mathrm{LY}
\end{aligned}
$$

So the plaintext is:
9. Determine if each of the following sets is well-ordered. If a set is not well-ordered give evidence. [15 pts] If a set is well-ordered no evidence is required.
(a) $\{0\} \cup\left\{\left.\frac{n+4}{n} \right\rvert\, n \in \mathbb{Z}^{+}\right\}$

Solution:

Not well-ordered, the set without 0 has no least element.
(b) $2 \mathbb{Z}$

Solution:

Not well-ordered, for example the set itself has no least element.
(c) $\left\{\lfloor\sqrt{n}\rfloor \mid n \in \mathbb{Z}^{+}\right\}$

Solution:

Well-ordered.
10. Suppose $p \geq 11$ is an unknown prime. Find all solutions to $x^{2}+8 \equiv 6 x \bmod p$. Note that [15 pts] your solutions will be $\bmod p$.

Solution:

Observe that for a solution x we would have:

$$
\begin{aligned}
x^{2}+8 & \equiv 6 x \bmod p \\
x^{2}-6 x+8 & \equiv 0 \bmod p \\
(x-2)(x-4) & \equiv 0 \bmod p
\end{aligned}
$$

Since p is prime we then have either $p \mid(x-2)$ or $p \mid(x-4)$ yielding solutions $x \equiv 2 \bmod p$ and $x \equiv 4 \bmod p$.
11. Consider the inequality:
[15 pts]

$$
3^{n}<n!
$$

(a) Find the smallest positive integer n_{0} for which this is true. Do this however you wish. Solution:
Testing gives $n_{0}=7$.
(b) Prove by induction that $3^{n}<n$! for all $n \geq n_{0}$.

Solution:

The base case was proven in part (a).
For the inductive step we assume that $3^{k}<k$! for $k \geq 7$ and claim that $3^{k+1}<(k+1)$!.
To see this note that:

$$
3^{k+1}=(3) 3^{k}<3 k!<(k+1) k!=(k+1)!
$$

where the final inequality holds becase $3<k+1$ because $k \geq 7$.
12. Suppose p is an odd prime such that there is some a so that a is a quadratic residue of p but [15 pts] $2 a$ is a quadratic non-residue of p. Prove that $p \equiv \pm 3 \bmod 8$.

Solution:

If a is a QR of p but $2 a$ is a QNR of p then $\left(\frac{a}{p}\right)=1$ and $\left(\frac{2 a}{p}\right)=-1$. However $\left(\frac{2 a}{p}\right)=\left(\frac{2}{p}\right)\left(\frac{a}{p}\right)$ so then $\left(\frac{2}{p}\right)=-1$.
We could only have $p \equiv \pm 3 \bmod 8$ or $p \equiv \pm 1 \bmod 8$.

- If $p \equiv \pm 3 \bmod 8$ then $p=8 k \pm 3$ so then $\left(\frac{2}{p}\right)=(-1)^{\left(p^{2}-1\right) / 8}=(-1)^{\left(64 k^{2} \pm 48 k+9-1\right) / 8}=-1$ as desired.
- If $p \equiv \pm 1 \bmod 8$ then $p=8 k \pm 1$ so then $\left(\frac{2}{p}\right)=(-1)^{\left(p^{2}-1\right) / 8}=(-1)^{\left(64 k^{2} \pm 16 k+1-1\right) / 8}=1$.

13. Prove that for $a, b \in \mathbb{Z}$ and $n \in \mathbb{Z}^{+}$that if $a^{n} \mid b^{n}$ then $a \mid b$.

Solution:

Suppose that $a^{n} \mid b^{n}$. Then $k a^{n}=b^{n}$ for some $k \in \mathbb{Z}$.
For any prime that appears in the prime factorization of k, that prime must appear with a power which is a multiple of n, since it appears in b^{n} with a power which is a multiple of n and if it appears in a^{n} it must also be with a power which is a multiple of n.
But this means $k=p_{1}^{c_{1} n} \ldots p_{m}^{c_{m} n}$ is the prime factorization of k and so $k=\left(p_{1}^{c_{1}} \ldots p_{m}^{c_{m}}\right)^{n}$ is a perfect square, meaning $\sqrt{k} \in \mathbb{Z}^{+}$, so that $a \sqrt{k}=b$ and $a \mid b$.
14. Prove that if $a, b, c \in \mathbb{Z}$ with $\operatorname{gcd}(a, b)=1$ and $c \mid(a+b)$ then $\operatorname{gcd}(c, a)=\operatorname{gcd}(c, b)=1$.

Solution:

We'll show that $\operatorname{gcd}(c, a)=1$. Suppose $d \mid c$ and $d \mid a$. Since $d \mid c$ and $c \mid(a+b)$ we have $d \mid(a+b)$. This, coupled with the fact that $d \mid a$, implies that $d \mid b$. However $\operatorname{gcd}(a, b)=1$ and so $d=1$.
The proof for $\operatorname{gcd}(c, b)=1$ is identical, mutatis mutandi.

