1. Numbers:

(a) Definition: Primarily in this class we'll focus on the integers:

$$
\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

We'll also spend time on subsets of \mathbb{Z} and other sets of numbers for which \mathbb{Z} and \mathbb{Z}^{+}are useful.
(b) Definition: A set is well-ordered if every nonempty subset has a least element. Note: It's not enough that the set itself has a least element, but every subset must!

- Axiom: The set \mathbb{Z}^{+}is well-ordered.
- Example: The set \mathbb{Z} is not well-ordered.
- Example: The set $[0,1)$ is not well-ordered.
(c) Definition: A real number is rational if it can be written in the form $\frac{a}{b}$ where $a, b \in \mathbb{Z}$ and $b \neq 0$. The set of rational numbers is denoted \mathbb{Q}.
Example: The real number $\sqrt{2}$ is irrational.
Proof: There are many ways to do this. We'll do it here with well-ordering. By way of contradiction suppose $\sqrt{2}$ is rational so $\sqrt{2}=a / b$ with $a, b \in \mathbb{Z}$ and $b \neq 0$. Since $\sqrt{2}>0$ we can also assume $a, b \in \mathbb{Z}^{+}$. Note $a=b \sqrt{2}$ here. Consider the set

$$
S=\left\{k \mid k \in \mathbb{Z}^{+} \wedge k \sqrt{2} \in \mathbb{Z}^{+}\right\}
$$

Observe that $S \subset \mathbb{Z}^{+}$and $b \in S$ (because $b \in \mathbb{Z}^{+}$and $b \sqrt{2}=a \in \mathbb{Z}^{+}$) so S is nonempty and must have a least element. Let m be this least element. Consider $m^{\prime}=m \sqrt{2}-m$. Consider the following facts about m^{\prime} :

- $0<m \sqrt{2}-m=m(\sqrt{2}-1)<m$ so $0<m^{\prime}<m$.
- Since $m \in S$ we have $m \in \mathbb{Z}^{+}$and $m \sqrt{2} \in \mathbb{Z}^{+}$so $m^{\prime}=m \sqrt{2}-m \in \mathbb{Z}^{+}$.
- Since $m \in \mathbb{Z}^{+}$we have $2 m \in \mathbb{Z}^{+}$and since $m \sqrt{2} \in \mathbb{Z}^{+}$we have $m^{\prime} \sqrt{2}=(m \sqrt{2}-m) \sqrt{2}=$ $2 m-m \sqrt{2} \in \mathbb{Z}^{+}$.
It follows that $m^{\prime} \in S$ but $m^{\prime}<m$ which contradicts the fact that m is the least element. $\mathcal{Q E D}$
(d) Definition: A real numbers α is algebraic if is is the root of a polynomial with integer coefficients. Otherwise it is transcendental.
- Example: The real number $\sqrt{2}$ is algebraic.
- Example: The real number $\sqrt{7+\sqrt[3]{5}}$ is algebraic.
- Example: The real number π is transcendental This is not at all obvious and is hard to prove.

2. The Greatest and Least Integer Functions:

(a) Definition: For $a \in \mathbb{R}$ define the greatest integer function or floor function $\lfloor a\rfloor$ to be the greatest integer less than or equal to a.
(b) Definition: For $a \in \mathbb{R}$ define the least integer function or ceiling function $\lceil a\rceil$ to be the smallest integer greater than or equal to a.
3. Countable and Uncountable Sets:
(a) Definition: A set S is countable if it is either finite or if it is infinite and there is a $1-1$ correspondance between S and \mathbb{Z}^{+}. Otherwise it is uncountable.

- Example: The set \mathbb{Z} is countable.

Proof: We can arrange them as $0,1,-1,2,-2,3,-3, \ldots$ and then line them up with $1,2,3, \ldots$.

- Example: The set \mathbb{Q} is countable.

Proof: We'll just do \mathbb{Q}^{+}. We arrange them in a grid as is standard...

- Example: The set $[0,1)$ is uncountable.

Proof: Standard diagonalization argument.
4. Sequences: These are covered in Calculus 2 and is a prerequisite. We don't need all the convergence tests, etc., just remember what a sequence is.

