1. Numbers:

(a) **Definition:** Primarily in this class we'll focus on the integers:

$$\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$$

We'll also spend time on subsets of \mathbb{Z} and other sets of numbers for which \mathbb{Z} and \mathbb{Z}^+ are useful.

- (b) **Definition:** A set is *well-ordered* if every nonempty subset has a least element. Note: It's not enough that the set itself has a least element, but every subset must!
 - Axiom: The set \mathbb{Z}^+ is well-ordered.
 - **Example:** The set \mathbb{Z} is not well-ordered.
 - Example: The set [0, 1) is not well-ordered.
- (c) **Definition:** A real number is *rational* if it can be written in the form $\frac{a}{b}$ where $a, b \in \mathbb{Z}$ and $b \neq 0$. The set of rational numbers is denoted \mathbb{Q} .

Example: The real number $\sqrt{2}$ is irrational.

Proof: There are many ways to do this. We'll do it here with well-ordering. By way of contradiction suppose $\sqrt{2}$ is rational so $\sqrt{2} = a/b$ with $a, b \in \mathbb{Z}$ and $b \neq 0$. Since $\sqrt{2} > 0$ we can also assume $a, b \in \mathbb{Z}^+$. Note $a = b\sqrt{2}$ here. Consider the set

$$S = \left\{ k \, | \, k \in \mathbb{Z}^+ \land k\sqrt{2} \in \mathbb{Z}^+ \right\}$$

Observe that $S \subset \mathbb{Z}^+$ and $b \in S$ (because $b \in \mathbb{Z}^+$ and $b\sqrt{2} = a \in \mathbb{Z}^+$) so S is nonempty and must have a least element. Let m be this least element. Consider $m' = m\sqrt{2} - m$. Consider the following facts about m':

- $0 < m\sqrt{2} m = m(\sqrt{2} 1) < m$ so 0 < m' < m.
- Since $m \in S$ we have $m \in \mathbb{Z}^+$ and $m\sqrt{2} \in \mathbb{Z}^+$ so $m' = m\sqrt{2} m \in \mathbb{Z}^+$.
- Since $m \in \mathbb{Z}^+$ we have $2m \in \mathbb{Z}^+$ and since $m\sqrt{2} \in \mathbb{Z}^+$ we have $m'\sqrt{2} = (m\sqrt{2} m)\sqrt{2} = 2m m\sqrt{2} \in \mathbb{Z}^+$.

It follows that $m' \in S$ but m' < m which contradicts the fact that m is the least element. \mathcal{QED}

- (d) **Definition:** A real numbers α is *algebraic* if is is the root of a polynomial with integer coefficients. Otherwise it is *transcendental*.
 - **Example:** The real number $\sqrt{2}$ is algebraic.
 - **Example:** The real number $\sqrt{7 + \sqrt[3]{5}}$ is algebraic.
 - **Example:** The real number π is transcendental This is not at all obvious and is hard to prove.

2. The Greatest and Least Integer Functions:

- (a) **Definition:** For $a \in \mathbb{R}$ define the greatest integer function or floor function $\lfloor a \rfloor$ to be the greatest integer less than or equal to a.
- (b) **Definition:** For $a \in \mathbb{R}$ define the *least integer function* or *ceiling function* $\lceil a \rceil$ to be the smallest integer greater than or equal to a.

3. Countable and Uncountable Sets:

- (a) **Definition:** A set S is *countable* if it is either finite or if it is infinite and there is a 1-1 correspondance between S and \mathbb{Z}^+ . Otherwise it is *uncountable*.
 - Example: The set ℤ is countable. **Proof:** We can arrange them as 0, 1, -1, 2, -2, 3, -3, ... and then line them up with 1, 2, 3,
 - Example: The set \mathbb{Q} is countable. **Proof:** We'll just do \mathbb{Q}^+ . We arrange them in a grid as is standard...
 - Example: The set [0, 1) is uncountable. Proof: Standard diagonalization argument.
- 4. **Sequences:** These are covered in Calculus 2 and is a prerequisite. We don't need all the convergence tests, etc., just remember what a sequence is.