1. Sums:
(a) Definition: For a sequence a_{1}, a_{2}, \ldots we know the notation

$$
\sum_{i=1}^{n} a_{i}=a_{1}+a_{2} \ldots+a_{n}
$$

so there's not much that needs to be said.
(b) Geometric Sum: It is useful to remember the geometric sum formula:

$$
\sum_{i=0}^{n} r^{i}=\frac{r^{n+1}-1}{r-1}
$$

which follows from the polynomial product:

$$
\left(1+r+r^{2}+\ldots+r^{n}\right)(r-1)=r^{n+1}-1
$$

(c) Telescoping Sums: It is also useful to recall that some sums telescope closed, for example:

$$
\begin{aligned}
\sum_{i=1}^{n} \frac{1}{j(j+1)} & =\sum_{i=1}^{n}\left(\frac{1}{j}-\frac{1}{j+1}\right) \\
& =\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\ldots+\left(\frac{1}{n}-\frac{1}{n+1}\right) \\
& =\frac{1}{1}-\frac{1}{n+1}
\end{aligned}
$$

2. Products: Similarly we define the product:

$$
\prod_{i=1}^{n} a_{i}=a_{1} a_{2} \ldots a_{n}
$$

