Math 406 Section 1.5: Divisibility

- 1. **Introduction:** One of the primary starting points in number theory is the concept of divisibility and what stems from it.
- 2. **Definition:** If $a, b \in \mathbb{Z}$ with $a \neq 0$ we say that a divides b, written $a \mid b$, if there is some $c \in \mathbb{Z}$ such that ac = b. If not, then $a \nmid b$.

3. Properties and Warnings:

- (a) Note: Note that all nonzero numbers divide 0, so $10 \mid 0$ and $3498238402 \mid 0$. However we can't even talk about 0 dividing or not dividing things, so both $0 \mid 3$ and $0 \nmid 3$ are nonsensical.
- (b) **Theorem:** If $a \mid b$ and $b \mid c$ then $a \mid c$. **Proof:**

QED

- (c) Useful Note: Loosely speaking, ignoring negatives, a number can't divide a smaller number unless that smaller number is zero. For example if $5 \mid b$ and $b \geq 0$ then either $b \geq 5$ or b = 0. If we include negatives then we can say things like if $5 \mid b$ then either $b \geq 5$, $b \leq -5$ or b = 0. Paying attention to this can help clarify some proofs.
- (d) Warning: If $a \mid bc$ we cannot conclude that $a \mid b$ or $a \mid c$. For example 10 | (2)(5).
- (e) Warning: If $a \mid (b+c)$ we cannot conclude that $a \mid b$ or $a \mid c$. For example 10 $\mid (3+7)$.
- 4. Theorem (The Division Algorithm): If $a, b \in \mathbb{Z}$ with b > 0 then there are unique $q, r \in \mathbb{Z}$ such that a = bq + r with $0 \le r < b$. **Proof:** Define the set:

$$S = \{a - bk \mid k \in \mathbb{Z} \land a - bk \in \mathbb{Z} \land a - bk \ge 0\}$$

Note that for any integer k < a/b we have a - bk > a - b(a/b) = 0 so S is nonempty and therefore by well-ordering has a least element. Call this element r, so that $r \ge 0$ and r = a - bq for some $q \in \mathbb{Z}$. To ascertain that r < b observe that if $r \ge b$ then consider r - b:

- We have $r b \ge 0$.
- We have r b < r.
- We have $0 \le r b = (a bq) b = a b(q + 1)$.

But then $r - b \in S$, a contradiction.

To verify that these q and r are unique assume we have two such pairs q_1 , r_1 and q_2 , r_2 . Then we have $a = bq_1 + r_1$ and $a = bq_2 + r_2$ and subtracting yields:

$$0 = b(q_1 - q_2) + (r_1 - r_2)$$

Equivalently:

$$b(q_1 - q_2) = -(r_1 - r_2)$$

But then this tells us that $b \mid (r_1 - r_2)$. However $0 \le r_1 < b$ and $0 \le r_2 < b$ so that $-b < r_1 - r_2 < b$. In order to have $b \mid (r_1 - r_2)$ we then must have $r_1 - r_2 = 0$. and then $0 = b(q_1 - q_2)$ and $b \ne 0$ yields $q_1 - q_2 = 0$.

5. Greatest Common Divisors and Relative Primality

- (a) **Definition:** Suppose $a, b \in \mathbb{Z}$ such that at least one of them is nonzero. Then we define the greatest common divisor gcd (a, b) to be the largest integer that divides both.
- (b) **Definition:** We say that $a, b \in \mathbb{Z}$ are relatively prime or coprime if gcd(a, b) = 1.