1. Introduction: One of the primary starting points in number theory is the concept of divisibility and what stems from it.
2. Definition: If $a, b \in \mathbb{Z}$ with $a \neq 0$ we say that a divides b, written $a \mid b$, if there is some $c \in \mathbb{Z}$ such that $a c=b$. If not, then $a \nmid b$.

3. Properties and Warnings:

(a) Note: Note that all nonzero numbers divide 0 , so $10 \mid 0$ and $3498238402 \mid 0$. However we can't even talk about 0 dividing or not dividing things, so both $0 \mid 3$ and $0 \nmid 3$ are nonsensical.
(b) Theorem: If $a \mid b$ and $b \mid c$ then $a \mid c$. Proof:
(c) Useful Note: Loosely speaking, ignoring negatives, a number can't divide a smaller number unless that smaller number is zero. For example if $5 \mid b$ and $b \geq 0$ then either $b \geq 5$ or $b=0$. If we include negatives then we can say things like if $5 \mid b$ then either $b \geq 5, b \leq-5$ or $b=0$. Paying attention to this can help clarify some proofs.
(d) Warning: If $a \mid b c$ we cannot conclude that $a \mid b$ or $a \mid c$. For example $10 \mid(2)(5)$.
(e) Warning: If $a \mid(b+c)$ we cannot conclude that $a \mid b$ or $a \mid c$. For example $10 \mid(3+7)$.
4. Theorem (The Division Algorithm): If $a, b \in \mathbb{Z}$ with $b>0$ then there are unique $q, r \in \mathbb{Z}$ such that $a=b q+r$ with $0 \leq r<b$.
Proof: Define the set:

$$
S=\{a-b k \mid k \in \mathbb{Z} \wedge a-b k \in \mathbb{Z} \wedge a-b k \geq 0\}
$$

Note that for any integer $k<a / b$ we have $a-b k>a-b(a / b)=0$ so S is nonempty and therefore by well-ordering has a least element. Call this element r, so that $r \geq 0$ and $r=a-b q$ for some $q \in \mathbb{Z}$.
To ascertain that $r<b$ observe that if $r \geq b$ then consider $r-b$:

- We have $r-b \geq 0$.
- We have $r-b<r$.
- We have $0 \leq r-b=(a-b q)-b=a-b(q+1)$.

But then $r-b \in S$, a contradiction.
To verify that these q and r are unique assume we have two such pairs q_{1}, r_{1} and q_{2}, r_{2}. Then we have $a=b q_{1}+r_{1}$ and $a=b q_{2}+r_{2}$ and subtracting yields:

$$
0=b\left(q_{1}-q_{2}\right)+\left(r_{1}-r_{2}\right)
$$

Equivalently:

$$
b\left(q_{1}-q_{2}\right)=-\left(r_{1}-r_{2}\right)
$$

But then this tells us that $b \mid\left(r_{1}-r_{2}\right)$. However $0 \leq r_{1}<b$ and $0 \leq r_{2}<b$ so that $-b<r_{1}-r_{2}<b$. In order to have $b \mid\left(r_{1}-r_{2}\right)$ we then must have $r_{1}-r_{2}=0$. and then $0=b\left(q_{1}-q_{2}\right)$ and $b \neq 0$ yields $q_{1}-q_{2}=0$.

5. Greatest Common Divisors and Relative Primality

(a) Definition: Suppose $a, b \in \mathbb{Z}$ such that at least one of them is nonzero. Then we define the greatest common divisor $\operatorname{gcd}(a, b)$ to be the largest integer that divides both.
(b) Definition: We say that $a, b \in \mathbb{Z}$ are relatively prime or coprime if $\operatorname{gcd}(a, b)=1$.

