1. Introduction: There's a reasonable reason to jump from Chapter 9 to Chaper 11 which is that both sections concern themselves with solutions to equations. Chapter 11 is much more specific and essentially attempts to address the question:

Which integers are perfect squares mod m ?
For example if $p=7$ which integers are perfect squares? We could of course work backwards, squaring everything:

$$
\{0,1,2,3,4,5,6\}^{2} \equiv\{0,1,4,2,2,4,1\} \bmod 7
$$

Then we'd know that $\{0,1,2,4\}$ are all perfect squares. But how could we approach this in general?

2. Quadratic Residues and Nonresidues

The following definitions do not correspond exactly with the concept of being a perfect square but they're the simplest approach that allows us to develop some formulas.
Definition:
Suppose $\operatorname{gcd}(a, m)=1$. We say that $a \in \mathbb{Z}$ is a quadratic residue $(Q R) \bmod m$ if $x^{2} \equiv a \bmod m$ has a solution, meaning a is a perfect square.

Definition

Otherwise we say a is a quadratic nonresidue ($Q N R$) mod m. Sometimes I'll abbreviate QR and QNR.

Note:

If $\operatorname{gcd}(a, m) \neq 1$ then a is neither a QR nor a QNR. The definitions simply don't apply.

Example:

The quadratic residues mod 7 are $\{1,2,4\}$ while the quadratic nonresidues are $\{3,5,6\}$. According to our definition 0 is neither because it's not coprime to 7 .

Example:

Mod $m=10$ we have:

$$
\left\{0^{2}, 1^{2}, 2^{2}, 3^{2}, 4^{2}, 5^{2}, 6^{2}, 7^{2}, 8^{2}, 9^{2}\right\} \equiv\{0,1,4,9,6,5,6,9,4,1\} \bmod 10
$$

The quadratic residues mod 10 are $\{1,9\}$ while the quadratic nonresidues are $\{3,7\}$. According to our definition $\{0,2,4,5,6,8\}$ are neither because they're not coprime to 10 .

3. Primes v Composites

The previous example is slightly annoying because we'd think of 4 as a perfect square $\bmod 10$, which it is, but it's not a quadratic residue.
However when the modulus is a prime p then because all of $\{1, \ldots, p-1\}$ are coprime to p the concept of being a quadratic residue and being a perfect square correspond, except for $a \equiv 0 \bmod p$ which is neither.

4. Quadratic Residues and Nonresidues for Primes - Some Theorems

(a) Theorem:

If p is an odd prime and $a \in \mathbb{Z}$ with $p \nmid a(\operatorname{sog} \operatorname{gcd}(p, a)=1)$, then $x^{2} \equiv a \bmod p$ either has no solutions or two incongruent solutions $\bmod p$.

Proof:

If there are no solutions we are done. If x is one solution then $x^{2} \equiv a \bmod p$ and then note that $(-x)^{2} \equiv a \bmod p$ and so $-x$ is another solution. It is different because $x \equiv-x \bmod p$ would imply that $p \mid 2 x$ but since $p \nmid 2$ this means that $p \mid x$ and so $p \mid x^{2}$ and so $x^{2} \equiv 0 \bmod p$ and so $a \equiv 0 \bmod p$ which contradicts $p \nmid a$.
But what if there are more than two? Suppose x_{1} and x_{2} are any two solutions, then $x_{1}^{2} \equiv a \equiv x_{2}^{2} \bmod p$ and so $p \mid\left(x_{1}^{2}-x_{2}^{2}\right)=\left(x_{1}-x_{2}\right)\left(x_{1}+x_{2}\right)$ which tells us that either $p \mid\left(x_{1}-x_{2}\right)$ or $p \mid\left(x_{1}+x_{2}\right)$. The first gives us $x_{1} \equiv x_{2} \bmod p$ and the second gives us $x_{1} \equiv-x_{2} \bmod p$. Thus there can only be the two which are the negatives of one another. $\mathcal{Q E D}$
(b) Theorem:

If p is an odd prime then there are exactly $(p-1) / 2$ quadratic residues and $(p-1) / 2$ quadratic nonresidues $\bmod p$.

Proof:

If we square all of $\{1,2, \ldots, p-1\} \bmod p$ we will get values in $\{1,2, \ldots, p-1\}$ (only 0^{2} yields $0 \bmod p$). We know that each result will occur twice and so there will $(p-1) / 2$ quadratic residues. The remaining will be the quadratic nonresidues.
$\mathcal{Q E D}$
(c) Theorem:

Let p be an odd prime and r be a primitive root of p (primes always have primitive roots). Then any a with $p \nmid a$ is a quadratic residue of p iff $\operatorname{ind}_{r} a$ is even.

Proof:

$\Longleftarrow:$ If $\operatorname{ind}_{r} a$ is even then observe that $\left(r^{\frac{1}{2} \mathrm{ind}_{r} a}\right)^{2} \equiv a \bmod p$ and so a is a quadratic residue $\bmod p$.
\Longrightarrow : Suppose a is a quadratic residue $\bmod p$ so there exists some x with $x^{2} \equiv a \bmod p$. Then we take the index of both sides to get $\operatorname{ind}_{r} x^{2} \equiv \operatorname{ind}_{r} a \bmod p-1$ and so $2 \operatorname{ind}_{r} x \equiv$ $\operatorname{ind}_{r} a \bmod p-1$. From here we see $\operatorname{ind}_{r} a=2 \operatorname{ind}_{r} x+k(p-1)$ for some $k \in \mathbb{Z}$ and so since $p-1$ is even we know $\operatorname{ind}_{r} a$ is even.
$\mathcal{Q E D}$

Example:

Here is a table of indices for $r=6$, a primitive root of $p=11$:

x	1	2	3	4	5	6	7	8	9	10
$\operatorname{ind}_{6} x$	0	9	2	8	6	1	3	7	4	5

The theorem tells us that mod 11 the quadratic residues are $\{1,3,4,5,9\}$ (even indices) while the quadratic nonresidues are $\{2,6,7,8,10\}$ (odd indices).

5. The Legendre Symbol and Properties

(a) Notation:

If p is an odd prime and $a \in \mathbb{Z}$ with $p \nmid a$. We define the Legendre symbol:

$$
\left(\frac{a}{p}\right)= \begin{cases}1 & \text { iff } a \text { is a quadratic residue } \bmod p \text { iff } x^{2} \equiv a \bmod p \text { has (two) solutions } \\ -1 & \text { iff } a \text { is a quadratic nonresidue } \bmod p \text { iff } x^{2} \equiv a \bmod p \text { has no solutions }\end{cases}
$$

Note:

We'll use the terms numerator and denominator even though these aren't fractions.

Example:

We have:

$$
\left(\frac{1}{7}\right)=\left(\frac{2}{7}\right)=\left(\frac{4}{7}\right)=1 \quad \text { and } \quad\left(\frac{3}{7}\right)=\left(\frac{5}{7}\right)=\left(\frac{6}{7}\right)=-1
$$

(b) Theorem (Euler's Criterion):

If p is an odd prime and $a \in \mathbb{Z}$ with $p \nmid a$ then:

$$
\left(\frac{a}{p}\right) \equiv a^{(p-1) / 2} \bmod p
$$

Proof:
Suppose $\left(\frac{a}{p}\right)=1$ and so let x satisfy $x^{2} \equiv a \bmod p$. Then we also have:

$$
a^{(p-1) / 2} \equiv\left(x^{2}\right)^{(p-1) / 2}=x^{p-1} \equiv 1 \bmod p
$$

The last equality is by Fermat's Little Theorem. Thus they are equal.
On the other hand suppose $\left(\frac{a}{p}\right)=-1$. First note that for each $x \in\{1,2, \ldots, p-1\}$ there is some unique $y \in\{1,2, \ldots, p-1\}$ with $x y \equiv a \bmod p$ (because it is a linear congruence with variable y and $\operatorname{gcd}(x, p)=1 \mid a)$. Moreover $y \not \equiv x \bmod p$ otherwise we would have $x^{2} \equiv a \bmod p$, contradicting $\left(\frac{a}{p}\right)=-1$.
Therefore the values $1,2, \ldots, p-1$ group into $(p-1) / 2$ pairs each of which have a product of a taken $\bmod p$. That is:

$$
(1)(2) \ldots(p-1) \equiv a^{(p-1) / 2} \bmod p
$$

But Wilson's Theorem states that:

$$
(p-1)!\equiv-1 \bmod p
$$

The result follows.

Example:

We have:

$$
\left(\frac{6}{11}\right) \equiv 6^{(11-1) / 2} \equiv 6^{5} \equiv 10 \equiv-1 \bmod 11
$$

and so 6 is a quadratic residue $\bmod 11$.

(c) Theorem (Properties):

If p is an odd prime and $a \in \mathbb{Z}$ with $p \nmid a$ and $p \nmid b$, then:
i. If $a \equiv b \bmod p$ then $\left(\frac{a}{p}\right)=\left(\frac{b}{p}\right)$. This states that we can reduce the numerator \bmod the denominator.
ii. $\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$
iii. $\left(\frac{a^{2}}{p}\right)=1$

Proof:
i. Clear because $x^{2} \equiv a \bmod p$ iff $x^{2} \equiv b \bmod p$ because $a \equiv b \bmod p$.
ii. We have:

$$
\begin{aligned}
\left(\frac{a b}{p}\right) & \equiv(a b)^{(p-1) / 2} \bmod p \\
& \equiv a^{(p-1) / 2} b^{(p-1) / 2} \bmod p \\
& \equiv\left(\frac{a}{p}\right)\left(\frac{b}{p}\right) \bmod p
\end{aligned}
$$

Now then since $p \geq 3$ and $p \left\lvert\,\left[\left(\frac{a b}{p}\right)-\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)\right]\right.$ but that difference can only be -2 , 0 or 2 (because the two terms can only be ± 1) we must have that difference being 0 . iii. Follows immediately from ii.
(d) Gauss' Lemma:

Suppose p is an odd prime and $a \in \mathbb{Z}$ with $p \nmid a$. If s is the number of least positive residues of $\{a, 2 a, 3 a, \ldots,((p-1) / 2) a\} \bmod p$ which are greater than $p / 2$ then $\left(\frac{a}{p}\right)=(-1)^{s}$.
Proof:
Omit. This proof is fairly lengthy.
$\mathcal{Q E D}$
Note:
This is a fairly bizarre theorem devoid of much intuition but it's good to do an example.

Example:

Consider $p=13$ with $a=8$. We have $(p-1) / 2=6$ and so we examine:

$$
\{a, 2 a, 3 a, 4 a, 5 a, 6 a\}=\{8,16,24,32,40,48\} \equiv\{8,3,11,6,1,9\} \bmod 13
$$

Since 3 of these are greater than $p / 2=6.5$ we have $\left(\frac{8}{13}\right)=(-1)^{3}=-1$. Thus 8 is a quadratic nonresidue mod 13.

6. Special Cases: -1 and 2

(a) Theorem (When is -1 a QR mod \mathbf{p} ?):

If p is an odd prime then:

$$
\left(\frac{-1}{p}\right)= \begin{cases}1 & \text { if } p \equiv 1 \bmod 4 \\ -1 & \text { if } p \equiv 3 \bmod 4\end{cases}
$$

Proof:
By Euler's Criterion we have:

$$
\left(\frac{-1}{p}\right) \equiv(-1)^{(p-1) / 2} \bmod p
$$

If $p \equiv 1 \bmod 4$ then $p=4 k+1$ for some $k \in \mathbb{Z}$ and so:

$$
(-1)^{(p-1) / 2}=(-1)^{(4 k+1-1) / 2}=(-1)^{2 k}=1
$$

If $p \equiv 3 \bmod 4$ then $p=4 k+3$ for some $k \in \mathbb{Z}$ and so:

$$
(-1)^{(p-1) / 2}=(-1)^{(4 k+3-1) / 2}=(-1)^{2 k+1}=-1
$$

(b) Theorem (When is 2 a QR mod \mathbf{p} ?):

If p is an odd prime then:

$$
\left(\frac{2}{p}\right)= \begin{cases}1 & \text { if } p \equiv 1,7 \bmod 8 \\ -1 & \text { if } p \equiv 3,5 \bmod 8\end{cases}
$$

Proof:
Omitted as it's fairly lengthy.

Note:

This is equivalent to:

$$
\left(\frac{2}{p}\right)=(-1)^{\left(p^{2}-1\right) / 8}
$$

