1. Introduction: The Law of Quadratic reciprocity establishes that for primes p and q there is a connection between when p is quadratic residue $\bmod q$ and when q is a quadratic residue $\bmod p$.
2. Theorem (Law of Quadratic Reciprocity): Suppose p and q are distinct odd primes, then:

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\left(\frac{p-1}{2}\right)\left(\frac{q-1}{2}\right)}
$$

Note: In terms of practical computational application this can be better stated as:

$$
\left(\frac{p}{q}\right)=\left\{\begin{aligned}
\left(\frac{q}{p}\right) & \text { if } p \equiv 1 \bmod 4 \text { or } q \equiv 1 \bmod 4 \\
-\left(\frac{q}{p}\right) & \text { if } p \equiv 3 \bmod 4 \text { and } q \equiv 3 \bmod 4
\end{aligned}\right.
$$

Note: Both the numerator and denominator must be prime in order to use this.
Proof: Omitted due to length.
3. Calculation: If we combine this along with a few facts from before:
(a) For simple values we can just trial-and-error.
(b) If $a \equiv b \bmod p$ then $\left(\frac{a}{p}\right)=\left(\frac{b}{p}\right)$. This states that we can reduce the numerator mod the denominator. Call this "reducing".
(c) $\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$ Call this "splitting".
(d) $\left(\frac{a^{2}}{p}\right)=1$ Call this the "square rule".
(e) If p is an odd prime then:

$$
\left(\frac{-1}{p}\right)= \begin{cases}1 & \text { if } p \equiv 1 \bmod 4 \\ -1 & \text { if } p \equiv 3 \bmod 4\end{cases}
$$

Call this the " -1 rule".
(f) If p is an odd prime then:

$$
\left(\frac{2}{p}\right)= \begin{cases}1 & \text { if } p \equiv 1,7 \bmod 8 \\ -1 & \text { if } p \equiv 3,5 \bmod 8\end{cases}
$$

Call this the " 2 rule".

We can then go on to calculate a fairly large number of Legendre symbols:
Example: Let's calculate ($\frac{48}{29}$):
$\left(\frac{48}{19}\right)=\left(\frac{19}{29}\right)$ by reducing.
$\left(\frac{19}{29}\right)=\left(\frac{29}{19}\right)$ by the LoQR since $29 \equiv 1 \bmod 4$.
$\left(\frac{29}{19}\right)=\left(\frac{10}{19}\right)$ by reducing.
$\left(\frac{10}{19}\right)=\left(\frac{2}{19}\right)\left(\frac{5}{19}\right)$ by splitting.
We then do these separately. First:
$\left(\frac{2}{19}\right)=-1$ by the 2 rule because $19 \equiv 3 \bmod 8$.
Second:
$\left(\frac{5}{19}\right)=\left(\frac{19}{5}\right)$ by the LoQR since $5 \equiv 1 \bmod 4$.
$\left(\frac{19}{5}\right)=\left(\frac{4}{5}\right)$ by reducing.
$\left(\frac{4}{5}\right)=1$ by the square rule.
Thus $\left(\frac{48}{29}\right)=(-1)(1)=-1$.
Example: Let's calculate $\left(\frac{105}{1009}\right)$. Note that 105 is not prime so we cannot use the LoQR immediately.
$\left(\frac{105}{1009}\right)=\left(\frac{3}{1009}\right)\left(\frac{5}{1009}\right)\left(\frac{7}{1009}\right)$ by splitting.
We then do these separately. First:
$\left(\frac{3}{1009}\right)=\left(\frac{1009}{3}\right)$ by LoQR since $1009 \equiv 1 \bmod 4$.
$\left(\frac{1009}{3}\right)=\left(\frac{1}{3}\right)$ by reducing.
$\left(\frac{1}{3}\right)=1$
Second:
$\left(\frac{5}{1009}\right)=\left(\frac{1009}{5}\right)$ by LoQR since $1009 \equiv 1 \bmod 4$.
$\left(\frac{1009}{5}\right)=\left(\frac{4}{5}\right)$ by reducing.
$\left(\frac{4}{5}\right)=1$ by the square rule.
Third:
$\left(\frac{7}{1009}\right)=\left(\frac{1009}{7}\right)$ by LoQR since $1009 \equiv 1 \bmod 4$.
$\left(\frac{1009}{7}\right)=\left(\frac{1}{7}\right)$ by reducing.
$\left(\frac{1}{7}\right)=1$
Thus $\left(\frac{105}{1009}\right)=(1)(1)(1)=1$.

