1. **Introduction:** The Law of Quadratic reciprocity establishes that for primes p and q there is a connection between when p is quadratic residue mod q and when q is a quadratic residue mod p.

2. **Theorem (Law of Quadratic Reciprocity):** Suppose p and q are distinct odd primes, then:

$$
\left(\frac{p}{q} \right) \left(\frac{q}{p} \right) = (-1)^{(\frac{p-1}{2})(\frac{q-1}{2})}
$$

Note: In terms of practical computational application this can be better stated as:

$$
\left(\frac{p}{q} \right) = \begin{cases}
\left(\frac{q}{p} \right) & \text{if } p \equiv 1 \mod 4 \text{ or } q \equiv 1 \mod 4 \\
-\left(\frac{q}{p} \right) & \text{if } p \equiv 3 \mod 4 \text{ and } q \equiv 3 \mod 4
\end{cases}
$$

Note: Both the numerator and denominator must be prime in order to use this.

Proof: Omitted due to length. QED

3. **Calculation:** If we combine this along with a few facts from before:

(a) For simple values we can just trial-and-error.

(b) If $a \equiv b \mod p$ then $\left(\frac{a}{p} \right) = \left(\frac{b}{p} \right)$. This states that we can reduce the numerator mod the denominator. Call this “reducing”.

(c) $\left(\frac{ab}{p} \right) = \left(\frac{a}{p} \right) \left(\frac{b}{p} \right)$ Call this “splitting”.

(d) $\left(\frac{a^2}{p} \right) = 1$ Call this the “square rule”.

(e) If p is an odd prime then:

$$
\left(\frac{-1}{p} \right) = \begin{cases}
1 & \text{if } p \equiv 1 \mod 4 \\
-1 & \text{if } p \equiv 3 \mod 4
\end{cases}
$$

Call this the “-1 rule”.

(f) If p is an odd prime then:

$$
\left(\frac{2}{p} \right) = \begin{cases}
1 & \text{if } p \equiv 1, 7 \mod 8 \\
-1 & \text{if } p \equiv 3, 5 \mod 8
\end{cases}
$$

Call this the “2 rule”.
We can then go on to calculate a fairly large number of Legendre symbols:

Example: Let’s calculate \(\left(\frac{48}{29} \right) \):

\[\left(\frac{48}{29} \right) = \left(\frac{12}{29} \right) \text{ by reducing.}\]
\[\left(\frac{12}{29} \right) = \left(\frac{2}{29} \right) \text{ by the LoQR since } 29 \equiv 1 \text{ mod } 4.\]
\[\left(\frac{2}{29} \right) = \left(\frac{2}{19} \right) \text{ by splitting.}\]

We then do these separately. First:
\[\left(\frac{2}{19} \right) = -1 \text{ by the } 2 \text{ rule because } 19 \equiv 3 \text{ mod } 8.\]

Second:
\[\left(\frac{5}{19} \right) = \left(\frac{19}{5} \right) \text{ by the LoQR since } 5 \equiv 1 \text{ mod } 4.\]
\[\left(\frac{19}{5} \right) = \left(\frac{2}{5} \right) \text{ by reducing.}\]
\[\left(\frac{2}{5} \right) = 1 \text{ by the square rule.}\]

Thus \(\left(\frac{48}{29} \right) = (-1)(1) = -1. \)

Example: Let’s calculate \(\left(\frac{105}{1009} \right) \). Note that 105 is not prime so we cannot use the LoQR immediately.

\[\left(\frac{105}{1009} \right) = \left(\frac{3}{1009} \right) \left(\frac{5}{1009} \right) \left(\frac{7}{1009} \right) \text{ by splitting.}\]

We then do these separately. First:
\[\left(\frac{3}{1009} \right) = \left(\frac{1009}{3} \right) \text{ by LoQR since } 1009 \equiv 1 \text{ mod } 4.\]
\[\left(\frac{1009}{3} \right) = \left(\frac{1}{3} \right) \text{ by reducing.}\]
\[\left(\frac{1}{3} \right) = 1 \text{ by reducing.}\]

Second:
\[\left(\frac{5}{1009} \right) = \left(\frac{1009}{5} \right) \text{ by LoQR since } 1009 \equiv 1 \text{ mod } 4.\]
\[\left(\frac{1009}{5} \right) = \left(\frac{4}{5} \right) \text{ by reducing.}\]
\[\left(\frac{4}{5} \right) = 1 \text{ by the square rule.}\]

Third:
\[\left(\frac{7}{1009} \right) = \left(\frac{1009}{7} \right) \text{ by LoQR since } 1009 \equiv 1 \text{ mod } 4.\]
\[\left(\frac{1009}{7} \right) = \left(\frac{1}{7} \right) \text{ by reducing.}\]
\[\left(\frac{1}{7} \right) = 1 \text{ by reducing.}\]

Thus \(\left(\frac{105}{1009} \right) = (1)(1)(1) = 1. \)