
Math 406 Section 3.3: The Greatest Common Divisor

1. Introduction: We defined the gcd earlier. Now we will look at some properties. Some of these are
fairly intuitive and some are not, but all are useful.

2. Theorem: If a, b ∈ Z with gcd (a, b) = d, then gcd (a/d, b/d) = 1.

Note: This makes intutive sense. When we divide out the common stuff there’s nothing common left.

Proof: Suppose a, b ∈ Z with gcd (a, b) = d. Suppose α | (a/d) and α | (b/d). Then αx = a/d and
αy = b/d for x, y ∈ Z. Then a = αxd and b = αyd and so αd divides both a and b and so αd ≤ d.
Thus α = 1. QED
Corollary: If a and b 6= 0 are integers then ∃p, q ∈ Z with a/b = p/q and gcd (p, q) = 1.

Note: All this is saying is that we can reduce a fraction until there are no common terms remaining.

Proof: Set p = a/gcd (a, b) and q = b/gcd (a, b). QED

3. Theorem: For integers a, b, c we have gcd (a, b) = gcd (a, b+ ca).

Note: This makes sense. Adding multiples of one integer to the other does’t change any of the common
divisors.

Proof: If α | a and α | b then α | (b+ ca). Thus any divisor of both a, b is a divisor of both a, b+ ca.

Suppose α | a and α | (b+ ca) then α | ((b+ ca)− ca) so α | b. Thus any divisor of both a, b+ ca is a
divisor of both a, b.

Since both pairs have the same set of divisors they certainly have the same greatest common divisor.
QED

4. Definition: For integers a, b a linear combination of a and b is an expression of the form αa+ βb for
α, β ∈ Z.

5. Theorem: For integers a, b, not both 0, the smallest positive linear combination of a and b equals
gcd (a, b).

Note: The adjective are important here. What this is saying is that the greatest common divisor is
the smallest positive linear combination. For example gcd (15, 35) = 5 and 5 = 1(35) + (−2)15 as a
linear combination, moreover there’s no way to get a smaller positive linear combination.

Proof: Suppose d is the smallest positive linear combination of a and b. We claim it is the greatest
common divisor. Write:

d = αa+ βb

By the division algorithm we have:

a = qd+ r with 0 ≤ r < d

Then we have:

r = a− qd = a− q(αa+ βb) = a− qαa− qβb = (1− qα)a− (qβ)b

Therefore r is also a linear combination of a and b but 0 ≤ r < d so r = 0 since d is smallest. Therefore
a = qd and so d | a.

Similarly d | b.
So now we know that d is a common divisor of both a and b but why is it the greatest common divisor?
Suppose c | a and c | b. Then c | (αa+ βb) so c | d so c ≤ d. Thus d is in fact the greatest. QED



Note: This theorem is insanely useful. The reason is that without it we know that the gcd exists but
we have no real way of getting ahold of it to work with it. Now we do because we know it’s a linear
combination of the two integers.

Corollary: If a and b are relatively prime then ∃α, β ∈ Z with αa+ βb = 1.

Proof: Obvious. QED

6. Theorem: If a, b ∈ Z+ then the set of linear combinations of a and b equals the set of multiples of
gcd (a, b).

Proof: First we show that every linear combination of a and b is a multiple of gcd (a, b). Let x =
αa+ βb. Since gcd (a, b) divides both a and b it divides x and so x is a multiple of gcd (a, b).

Second we show that every multiple of gcd (a, b) is a linear combination of a and b. We know that
gcd (a, b) = αa + βb and so clearly every multiple looks like mgcd (a, b) = (αm)a + (βm)b and is a
linear combination.

QED

7. Theorem: If a, b ∈ Z not both 0 then some d ∈ Z+ is in fact gcd (a, b) if and only if both of the
following hold:

• d | a and d | b
• If c | a and c | b then c | d.

Note: This basically says that not only is every other divisor less than gcd (a, b) but it divides gcd (a, b).

Proof: Suppose d = gcd (a, b). We’ll show it has these properties. Of course d | a and d | b since it’s
a common divisor. Suppose c | a and c | b. Since d = αa+ βb for α, β ∈ Z we have c | d.

Next we’ll show that if some d has these properties it must be the gcd. Since d | a and d | b it’s
obviously a common divisor. Why is it greatest? If c is some other common divisor then since c | a
and c | b we know c | d and so c ≤ d. QED


