
Math 406 Section 4.1: Introduction to Congruences

1. Introduction: When attempting to prove things about integers it can often be the case that we can
make the question easier than it is at first glance. For example suppose we wished to find integers x, y
such that 2x2 + 8y = 11. We might make the observation that the left side is even but the right side
is odd and so no solution exists. What we have done here is changed the problem (check all numbers)
to a simpler problem (check evens and odds). The language of congruences is a more sophisticated
version of this.

2. Definition and Equivalencies:

(a) Definition: Let m ∈ Z+ and a, b ∈ Z. We say that a and b are congruent mod(ulo) m if m | (b−a).
We write a = b mod m or a ≡ b mod m or a ≡m b although the latter can be confusing in later
contexts. Sometimes we also write a mod m = b although this generally happens in computer
science when we think of mod as a function. The value m is the modulus.

Example: We have 56 ≡ 23 mod 11 because 11 | (56− 23) and we have 56 6≡ 23 mod 12 because
12 - (56− 23).

(b) Theorem/Proof: Given that m | (a − b) iff there is some c with mc = a − b iff a = b + mc we
can say that a ≡ b mod m iff there is some c with a = b + mc. QED

3. Properties:

(a) Theorem (Congruence Properties): Congrence acts like equality in the following sense:

i. a ≡ a mod m

ii. a ≡ b mod m iff b ≡ a mod m

iii. If a ≡ b mod m and b ≡ c mod m then a ≡ c mod m.

iv. If a ≡ b mod m and c ≡ d mod m then a± c ≡ b± d mod m.

v. If a ≡ b mod m and c ≡ d mod m then ac ≡ bd mod m.

vi. If a ≡ b mod m then ak ≡ bk mod m.

(b) Theorem (Division Issues): You might notice that division is lacking here. There are two
reasons for this.

First, when we divide integers we may not get integers.
Example: We know 2 ≡ 8 mod 6 but it makes no sense to write 2/3 ≡ 8/3 mod 6.

Second, even when we do get integers the resulting statement may be false.
Example: We know 2 ≡ 8 mod 6 but we can’t divide by 2 to get 1 ≡ 4 mod 6 as this is not true.

Of course sometimes it is true:
Example: We know that 2 ≡ 12 mod 5 and we can divide by 2 to get 1 ≡ 6 mod 5.

What is going on here is encapsulated in the following theorem:

Theorem: If ac ≡ bc mod m then a ≡ b mod m/gcd (m, c). In other words we may cancel an
integer from both sides provide we divide the modulus by the gcd of the modulus and the integer
we’re canceling.
Proof: Suppose ac ≡ bc mod m so that there is some k with km = ac− bc and so we have:
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Now then, by a previous theorem we know that:
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and so again by a previous theorem we know that:
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From here we get:
a ≡ b mod m/gcd(m, c)

QED
Example: If we know that 4x ≡ 8y mod 50 then we can conclude that x ≡ 2y mod 50/gcd (50, 4)
and so x ≡ 2y mod 25.

4. Residue Classes:

(a) Introduction: To get started consider the modulus m = 5. Notice that under congruence mod
5 all of the integers group into collections which are congruent to one another mod 5:

... ≡ −15 ≡ −10 ≡ −5 ≡ 0 ≡ 5 ≡ 10 ≡ 15 ≡ ... mod 5
... ≡ −14 ≡ −9 ≡ −4 ≡ 1 ≡ 6 ≡ 11 ≡ 16 ≡ ... mod 5
... ≡ −13 ≡ −8 ≡ −3 ≡ 2 ≡ 7 ≡ 12 ≡ 17 ≡ ... mod 5
... ≡ −12 ≡ −7 ≡ −2 ≡ 3 ≡ 8 ≡ 13 ≡ 18 ≡ ... mod 5
... ≡ −11 ≡ −6 ≡ −1 ≡ 4 ≡ 9 ≡ 14 ≡ 19 ≡ ... mod 5

Every integer is in one of these lines. It follows that we can divide all of Z into congruence classes
mod 5. In the above example there are five congruence classes:

{...,−15,−10,−5, 0, 5, 10, 15, ...}
{...,−14,−9,−4, 1, 6, 11, 16, ...}
{...,−13,−8,−3, 2, 7, 12, 17, ...}
{...,−12,−7,−2, 3, 8, 13, 18, ...}
{...,−11,−6,−1, 4, 9, 14, 19, ...}

Note a couple of things:

• Each of these has a particularly nice entry, the smallest nonnegative one. We might take a
representative from each class and get the set {0, 1, 2, 3, 4}.

• There are other ways to pick a representative from each class, for example {0, 2, 4, 6, 8}. These
differ in that they are all even, which may be useful.

• Another example might be {0, 2, 4, 8, 16} which are all, except for 0, powers of 2. This may
be useful if we are working with powers of 2.

(b) Definition: Given a modulus m the integers Z separate into m distinct congruence classes mod
m.

(c) Definition: Given a modulus m a complete set of residues mod m is a set of m integers with the
property that any integer is equivalent to exactly one integer in the set.

(d) Theorem: If S is a set of m integers no two of which are congruent mod m then S forms a
complete set of residues mod m.
Proof: If a ∈ Z were not congruent to anything in S then dividing a by m yields a remainder
which does not appear when dividing anything in S by m. This means that in S if we divide
everything by m there is a remainder we miss, meaning that there are only m−1 remainders, but
there are m integers, meaning two have the same remainder as one another when divided by m,
which contradicts the fact that no two are congruent mod m.



(e) Definition: Given a modulus m the set {0, 1, 2, ...,m− 1} is the set of least nonnegative residues
mod m.

(f) Theorem: Given a modulus m. Suppose {r1, ..., rm} is a complete set of residues and suppose
a, b ∈ Z such that gcd (a,m) = 1, then {ar1 + b, ar2 + b, ..., arm + b} is also a complete set of
residues.

Proof: No two of these are congruent mod m because if ari + b ≡ arj + b mod m then ari ≡
arj mod m and we may cancel the a because gcd (a,m) = 1 to get ri ≡ rj mod m, a contradiction.
Since no two are congruent mod m and there are m of them they form a complete set of residues.

5. Fast Exponentiation: It can often be important to calculate very high powers modulo some m, which
means to calculate the least nonnegative residue mod m. For example we know that 2503 ≡ a mod 5
for a = 0, 1, 2, 3, 4 but which?

There are a couple of way to approach this:

(a) Look for patterns. We will prove some essential number theory congruences later which will
formalize this but consider for example that in the example above: 21 ≡ 2 mod 5, 22 ≡ 4 mod 5,
23 ≡ 3 mod 5, 24 ≡ 1 mod 5. Using this last one we can see that since 503 = 4(125) + 3 we have:

2503 = (24)12523 ≡ 11253 = 3 mod 5

(b) Be systematic. For something like 3562 mod 847 we can repeatedly square 3 as follows:

31 ≡ 3 mod 847

32 ≡ 9 mod 847

34 ≡ 81 mod 847

38 ≡ 812 ≡ 632 mod 847

316 ≡ 6322 ≡ 487 mod 847

332 ≡ 4872 ≡ 9 mod 847

364 ≡ 81 mod 847

3128 ≡ 812 ≡ 632 mod 847

3256 ≡ 6322 ≡ 487 mod 847

3512 ≡ 4872 ≡ 9 mod 847

Then note that by decontructing 562 into binary we have 562 = 512 + 32 + 16 + 2 and so:

3562 ≡ 351233231632 ≡ (9)(9)(487)(9) ≡ 130 mod 847

This isn’t trivial, it takes work to do this final calculation, but the work required for entire problem
is in pieces and is more manageable than actually calculating 3562 which has over 562 log(3) ≈
268.14 digits.


