1. Introduction:

Solving congruences is hard and so we will begin with linear congruences:

$$
a x \equiv b \bmod m
$$

2. Do Solutions Exist:

Consider that for $x \in \mathbb{Z}$ we have $a x \equiv b \bmod m$ iff there is some $y \in \mathbb{Z}$ such that

$$
a x+m y=b
$$

in other words if b is a linear combination of a and m, and this will happen exactly when gcd $(a, m) \mid b$. So for starters we can say that $a x \equiv b \bmod m$ has solutions iff $\operatorname{gcd}(a, m) \mid b$.

3. Finding One Solution:

Once we know this, how can we find one solution for starters? Well we can use the Euclidean Algorithm to solve $a x^{\prime}+m y^{\prime}=\operatorname{gcd}(a, m)$ and then scale both sides to get b on the right and then the coefficient of a will be our x. We'll typically call this x_{0} and write it as the least nonnegative residue mod m.

Example:

Consider $4 x \equiv 6 \bmod 50$. We have $\operatorname{gcd}(4,50)=2 \mid 6$ so that solutions exist. First we use the Euclidean Algorithm to solve:

$$
4 x^{\prime}+50 y^{\prime}=2
$$

This gives us $x^{\prime}=-12$ and $y^{\prime}=1$, in other words:

$$
4(-12)+50(1)=2
$$

and hence:

$$
4(-36)+50(3)=6
$$

So one solution is $x=-36$ and we can see this:

$$
4(-36) \equiv 6 \bmod 50
$$

We'll replace this by the least nonnegative residue $x_{0} \equiv 14 \bmod 50$.

4. Finding All Solutions:

So now we need to ask if there are other solutions. Suppose we have one, so we have $a x_{0} \equiv b$ mod m. What can we say if x is another solution?
Well suppose $x \in \mathbb{Z}$ is another solution, then we can say:

$$
a x \equiv b \bmod m
$$

which by subtracting implies:

$$
a\left(x-x_{0}\right) \equiv 0 \bmod m
$$

This then implies that:

$$
x-x_{0} \equiv 0 \bmod m / \operatorname{gcd}(m, a)
$$

And this implies that:

$$
x=x_{0}+k\left(\frac{m}{\operatorname{gcd}(m, a)}\right) \text { for } k \in \mathbb{Z}
$$

So we know that if we have another solution then the solution must look like this. However are all these solutions and do they differ?
Well, suppose that we choose $k \in \mathbb{Z}$ and let:

$$
x=x_{0}+k\left(\frac{m}{\operatorname{gcd}(m, a)}\right)
$$

Then observe that:

$$
\begin{aligned}
a x & \equiv a\left(x_{0}+k\left(\frac{m}{\operatorname{gcd}(m, a)}\right) \bmod m\right. \\
& \equiv a x_{0}+a k\left(\frac{m}{\operatorname{gcd}(m, a)}\right) \bmod m \\
& \equiv b+k\left(\frac{m a}{\operatorname{gcd}(m, a)}\right) \bmod m \\
& \equiv b+k(\operatorname{lcm}(m, a)) \bmod m \\
& \equiv b+k(0) \bmod m \\
& \equiv b \bmod m
\end{aligned}
$$

Thus all of these are in fact solutions.

5. Incongruent solutions mod m

Lastly, when are they unique $\bmod m$?
Well first suppose that we have two solutions, one with k_{1} and one with k_{2}. Then if the solutions are congruent $\bmod m$ then:

$$
\begin{aligned}
x_{0}+k_{1}\left(\frac{m}{\operatorname{gcd}(m, a)}\right) & \equiv x_{0}+k_{2}\left(\frac{m}{\operatorname{gcd}(m, a)}\right) \bmod m \\
k_{1}\left(\frac{m}{\operatorname{gcd}(m, a)}\right) & \equiv k_{2}\left(\frac{m}{\operatorname{gcd}(m, a)}\right) \bmod m \\
k_{1} & \equiv k_{2} \bmod \frac{m}{\operatorname{gcd}(m, m / \operatorname{gcd}(m, a))} \\
k_{1} & \equiv k_{2} \bmod \frac{m}{m / \operatorname{gcd}(m, a)} \\
k_{1} & \equiv k_{2} \bmod \operatorname{gcd}(m, a)
\end{aligned}
$$

(Note that $\operatorname{gcd}(m, m / \operatorname{gcd}(m, a))=m / \operatorname{gcd}(m, a)$ since $m / g c d(m, a)$ divides both.)
On the other hand if $k_{1} \equiv k_{2} \bmod \operatorname{gcd}(m, a)$ then $k_{1}=k_{2}+\alpha \operatorname{gcd}(m, a)$ for some $\alpha \in \mathbb{Z}$ and then:

$$
\begin{aligned}
x_{0}+k_{1}\left(\frac{m}{\operatorname{gcd}(m, a)}\right) & =x_{0}+\left(k_{2}+\alpha \operatorname{gcd}(m, a)\right)\left(\frac{m}{\operatorname{gcd}(m, a)}\right) \\
& \equiv x_{0}+k_{2}\left(\frac{m}{\operatorname{gcd}(m, a)}\right) \bmod m
\end{aligned}
$$

It follows that solutions differ iff $k_{1} \not \equiv k_{2} \bmod \operatorname{gcd}(m, a)$.

6. Summary Theorem:

The linear congruence $a x \equiv b \bmod m$ has solutions iff $\operatorname{gcd}(a, m) \mid b$. If it does then one solution x_{0} can be found via the Euclidean Algorithm and then there are $\operatorname{gcd}(m, a)$ distinct solutions mod m which are given by:

$$
x \equiv x_{0}+k\left(\frac{m}{\operatorname{gcd}(m, a)}\right) \bmod m \text { for } k=0,1, \ldots, \operatorname{gcd}(m, a)-1
$$

It's typical that for small lists of solutions we will explicitly list each and replace each with its least nonnegative residue if necessary. For large lists of solutions this can get a bit unwieldy.

(a) Example:

Our example from earlier, $4 x \equiv 6 \bmod 50$, has $\operatorname{gcd}(4,50)=2 \mid 6$ and so there are exactly two distinct solutions mod 50 . We found one to be $x_{0}=14$ and therefore all solutions have the form:

$$
x \equiv 14+k\left(\frac{50}{\operatorname{gcd}(50,4)}\right) \bmod 50 \text { for } k=0,1
$$

That is $x \equiv 14+25 k \bmod 50$ for $k=0,1$, or $x \equiv 14,39 \bmod 50$.
(b) Example:

Consider the linear congruence $20 x \equiv 15 \bmod 65$. Since $\operatorname{gcd}(20,65)=5 \mid 15$ there are exactly 5 distinct solutions mod 65.
We can obtain one by first using the Euclidean Algorithm to solve:

$$
20 x^{\prime}+65 y^{\prime}=5
$$

This gives us:

$$
20(-3)+65(1)=5
$$

Hence:

$$
20(-9)+65(3)=15
$$

Thus we have $20(-9) \equiv 15 \bmod 65$ and so $x_{0} \equiv-9 \bmod 65$ is one solution but we could use the least nonnegative residue solution $x_{0} \equiv 56 \bmod 65$.
Therefore all solutions have the form:

$$
x \equiv 56+k\left(\frac{65}{\operatorname{gcd}(65,20)}\right) \bmod 65 \text { for } k=0,1,2,3,4
$$

That is $x \equiv 56+13 k \bmod 65$ for $k=0,1,2,3,4$. If we did want to replace these by their least nonnegative residues we would need to list them as $x \equiv 56,69,82,95,108 \bmod 65$ and replace them to get $x \equiv 56,4,17,30,43 \bmod 65$.

