1. **Introduction:** The Chinese Remainder Theorem (CRT) is a tool for solving systems of linear congruences. For example suppose we wished to solve the system:

$$2x \equiv 3 \mod 10$$
$$x \equiv 2 \mod 21$$

What could we say about the nature of the solutions?

- 2. Lemma: If $b_1, b_2, ..., b_r$ are pairwise coprime and for each *i* we have $b_i \mid c$ then $b_1 b_2 ... b_r \mid c$.
 - **Proof:** Suppose p^k appears in the prime factorization of $b_1b_2...b_r$. Then p^k appears in only one of the b_i since they are pairwise coprime. Then since $b_i \mid c$ we know that p^j appears in the prime factorization of c with $j \geq k$. Thus $b_1b_2...b_r \mid c$.
- 3. Theorem (The Chinese Remainder Theorem): Suppose $m_1, m_2, ..., m_r$ are pairwise coprime integers. Then the system:

$$x \equiv a_1 \mod m_1$$
$$x \equiv a_2 \mod m_2$$
$$\vdots \qquad \vdots$$
$$x \equiv a_r \mod m_r$$

Has a unique solution mod $M = m_1 m_2 \dots m_r$.

Pre-Proof Note: The proof of this is interesting in that it's constructive, meaning it explicitly tells us how to construct a solution.

Proof: For each *i* define $M_i = M/m_i$, then for each *i* the equation $M_i y_i \equiv 1 \mod m_i$ has a unique solution since gcd $(M_i, m_i) = 1 \mid 1$. Note that gcd $(M_i, m_i) = 1$ is guaranteed by the pairwise coprimality.

Take all the y_i and construct the integer:

$$M = a_1 M_1 y_1 + a_2 M_2 y_2 + \dots + a_r M_r y_r$$

Our claim is that this does the job. To see this note that for any particular i we have $m_i \mid M_j$ for $j \neq i$. This means that $M_j \equiv 0 \mod m_i$ for each $j \neq i$ and so when we examine $M \mod m_i$ we are only left with $a_i M_i y_i$ and $a_i M_i y_i \equiv a_i \mod m_i$.

To show that this M is unique mod M we suppose that x_1 and x_2 are both solutions. Then for each i we have $x_1 \equiv a_i \equiv x_2 \mod m_i$ and so $m_i \mid (x_1 - x_2)$. But then since the m_i are pairwise coprime we have $M \mid (x_1 - x_2)$ and so $x_1 \equiv x_2 \mod M$. \mathcal{QED}

Note 1: When solving $M_i y_i \equiv 1 \mod m_i$ we should always reduce M_i first. This can help see the solution more easily. The solution may not be obvious though, but it's just a linear congruence and can be solved with the Euclidean Algorithm.

Note 2: If one (or more) of the linear congruences has a coefficient in front of the x then we must solve those linear congruences for x separately first.

Note 3: In addition if the m_i are not pairwise coprime then solutions may or may not exist and may or may not be unique, the Chinese Remainder Theorem says nothing.

4. Example: Consider the system:

$$x \equiv 2 \mod 6$$
$$x \equiv 4 \mod 7$$
$$x \equiv 3 \mod 25$$

The CRT states that there is a unique solution modulo (6)(7)(25) = 1050.

- Put $M_1 = (7)(25) = 175$ then we solve $M_1y_1 \equiv 1 \mod m_1$ which is $175y_1 \equiv 1 \mod 6$ which reduces to $1y_1 \equiv 1 \mod 6$ which has obvious solution $y_1 \equiv 1 \mod 6$.
- Put $M_2 = (6)(25) = 150$ then we solve $M_2y_2 \equiv 1 \mod m_2$ which is $150y_2 \equiv 1 \mod 7$ which reduces to $3y_2 \equiv 1 \mod 7$ which has solution $y_2 \equiv 5 \mod 7$.
- Put $M_3 = (6)(7) = 42$ then we solve $M_3y_3 \equiv 1 \mod m_3$ which is $42y_3 \equiv 1 \mod 25$ which reduces to $17y_3 \equiv 1 \mod 25$ which has solution $y_3 \equiv 3 \mod 25$.

Then we construct:

$$M = (2)(175)(1) + (4)(150)(5) + (3)(42)(3) = 3728 \equiv 578 \mod 1050$$

5. Application to Cryptography.

Much of this will be more clear when we have talked about the RSA algorithm but we can at least give a high-level overview of how the CRT is used in practice.

In the RSA algorithm Bob picks two large primes p and q. He picks e with gcd(e, (p-1)(q-1)) = 1 and calculates d with $de = 1 \mod (p-1)(q-1)$.

He then calculates n = pq and makes n and e public. He keeps p, q, d private.

When he gets an encrypted message c from Alice he decrypts it to the message x via:

$$x \equiv c^d \mod pq$$

This is a messy calculation because pq is large.

So what actually happens is that Bob also stores d_p the reduced residue of $d \mod p - 1$ and d_q the reduced residue of $d \mod q - 1$.

Then observe that:

$$x \equiv c^a \mod pq$$

 iff

$$x \equiv c^d \mod p$$
$$x \equiv c^d \mod q$$

 $x \equiv c^{d_p} \mod p$ $x \equiv c^{d_q} \mod q$

 iff

This last iff is because when working with a prime moduli
$$p$$
, exponents work mod $p-1$ as we'll see.
So what Bob actually does is calculates the reduced residue of $c^{d_p} \mod p$ and $c^{d_q} \mod q$ and then uses the CRT to solve for x .