
Math 406 Section 4.3: The Chinese Remainder Theorem

1. Introduction: The Chinese Remainder Theorem (CRT) is a tool for solving systems of linear con-
gruences. For example suppose we wished to solve the system:

2x ≡ 3 mod 10

x ≡ 2 mod 21

What could we say about the nature of the solutions?

2. Lemma: If b1, b2, ..., br are pairwise coprime and for each i we have bi | c then b1b2...br | c.
Proof: Suppose pk appears in the prime factorization of b1b2...br. Then pk appears in only one of the
bi since they are pairwise coprime. Then since bi | c we know that pj appears in the prime factorization
of c with j ≥ k. Thus b1b2...br | c. QED

3. Theorem (The Chinese Remainder Theorem): Suppose m1,m2, ...,mr are pairwise coprime
integers. Then the system:

x ≡ a1 mod m1

x ≡ a2 mod m2

...
...

x ≡ ar mod mr

Has a unique solution mod M = m1m2...mr.

Pre-Proof Note: The proof of this is interesting in that it’s constructive, meaning it explicitly tells
us how to construct a solution.

Proof: For each i define Mi = M/mi, then for each i the equation Miyi ≡ 1 mod mi has a unique
solution since gcd (Mi,mi) = 1 | 1. Note that gcd (Mi,mi) = 1 is guaranteed by the pairwise copri-
mality.

Take all the yi and construct the integer:

M = a1M1y1 + a2M2y2 + ... + arMryr

Our claim is that this does the job. To see this note that for any particular i we have mi | Mj for
j 6= i. This means that Mj ≡ 0 mod mi for each j 6= i and so when we examine M mod mi we are
only left with aiMiyi and aiMiyi ≡ ai mod mi.

To show that this M is unique mod M we suppose that x1 and x2 are both solutions. Then for each i
we have x1 ≡ ai ≡ x2 mod mi and so mi | (x1 − x2). But then since the mi are pairwise coprime we
have M | (x1 − x2) and so x1 ≡ x2 mod M . QED
Note 1: When solving Miyi ≡ 1 mod mi we should always reduce Mi first. This can help see the
solution more easily. The solution may not be obvious though, but it’s just a linear congruence and
can be solved with the Euclidean Algorithm.

Note 2: If one (or more) of the linear congruences has a coefficient in front of the x then we must
solve those linear congruences for x separately first.

Note 3: In addition if the mi are not pairwise coprime then solutions may or may not exist and may
or may not be unique, the Chinese Remainder Theorem says nothing.



4. Example: Consider the system:

x ≡ 2 mod 6

x ≡ 4 mod 7

x ≡ 3 mod 25

The CRT states that there is a unique solution modulo (6)(7)(25) = 1050.

• Put M1 = (7)(25) = 175 then we solve M1y1 ≡ 1 mod m1 which is 175y1 ≡ 1 mod 6 which reduces
to 1y1 ≡ 1 mod 6 which has obvious solution y1 ≡ 1 mod 6.

• Put M2 = (6)(25) = 150 then we solve M2y2 ≡ 1 mod m2 which is 150y2 ≡ 1 mod 7 which reduces
to 3y2 ≡ 1 mod 7 which has solution y2 ≡ 5 mod 7.

• Put M3 = (6)(7) = 42 then we solve M3y3 ≡ 1 mod m3 which is 42y3 ≡ 1 mod 25 which reduces
to 17y3 ≡ 1 mod 25 which has solution y3 ≡ 3 mod 25.

Then we construct:

M = (2)(175)(1) + (4)(150)(5) + (3)(42)(3) = 3728 ≡ 578 mod 1050

5. Application to Cryptography.

Much of this will be more clear when we have talked about the RSA algorithm but we can at least
give a high-level overview of how the CRT is used in practice.

In the RSA algorithm Bob picks two large primes p and q. He picks e with gcd (e, (p− 1)(q − 1)) = 1
and calculates d with de = 1 mod (p− 1)(q − 1).

He then calculates n = pq and makes n and e public. He keeps p, q, d private.

When he gets an encrypted message c from Alice he decrypts it to the message x via:

x ≡ cd mod pq

This is a messy calculation because pq is large.

So what actually happens is that Bob also stores dp the reduced residue of d mod p − 1 and dq the
reduced residue of d mod q − 1.

Then observe that:
x ≡ cd mod pq

iff

x ≡ cd mod p

x ≡ cd mod q

iff

x ≡ cdp mod p

x ≡ cdq mod q

This last iff is because when working with a prime moduli p, exponents work mod p− 1 as we’ll see.

So what Bob actually does is calculates the reduced residue of cdp mod p and cdq mod q and then uses
the CRT to solve for x.


