1. Introduction: The Chinese Remainder Theorem (CRT) is a tool for solving systems of linear congruences. For example suppose we wished to solve the system:

$$
\begin{aligned}
2 x & \equiv 3 \bmod 10 \\
x & \equiv 2 \bmod 21
\end{aligned}
$$

What could we say about the nature of the solutions?
2. Lemma: If $b_{1}, b_{2}, \ldots, b_{r}$ are pairwise coprime and for each i we have $b_{i} \mid c$ then $b_{1} b_{2} \ldots b_{r} \mid c$.

Proof: Suppose p^{k} appears in the prime factorization of $b_{1} b_{2} \ldots b_{r}$. Then p^{k} appears in only one of the b_{i} since they are pairwise coprime. Then since $b_{i} \mid c$ we know that p^{j} appears in the prime factorization of c with $j \geq k$. Thus $b_{1} b_{2} \ldots b_{r} \mid c$.
$\mathcal{Q E D}$
3. Theorem (The Chinese Remainder Theorem): Suppose $m_{1}, m_{2}, \ldots, m_{r}$ are pairwise coprime integers. Then the system:

$$
\begin{aligned}
& x \equiv a_{1} \bmod m_{1} \\
& x \equiv a_{2} \bmod m_{2} \\
& \vdots \vdots \\
& x \equiv a_{r} \bmod m_{r}
\end{aligned}
$$

Has a unique solution $\bmod M=m_{1} m_{2} \ldots m_{r}$.
Pre-Proof Note: The proof of this is interesting in that it's constructive, meaning it explicitly tells us how to construct a solution.
Proof: For each i define $M_{i}=M / m_{i}$, then for each i the equation $M_{i} y_{i} \equiv 1 \bmod m_{i}$ has a unique solution since $\operatorname{gcd}\left(M_{i}, m_{i}\right)=1 \mid 1$. Note that $\operatorname{gcd}\left(M_{i}, m_{i}\right)=1$ is guaranteed by the pairwise coprimality.
Take all the y_{i} and construct the integer:

$$
M=a_{1} M_{1} y_{1}+a_{2} M_{2} y_{2}+\ldots+a_{r} M_{r} y_{r}
$$

Our claim is that this does the job. To see this note that for any particular i we have $m_{i} \mid M_{j}$ for $j \neq i$. This means that $M_{j} \equiv 0 \bmod m_{i}$ for each $j \neq i$ and so when we examine $M \bmod m_{i}$ we are only left with $a_{i} M_{i} y_{i}$ and $a_{i} M_{i} y_{i} \equiv a_{i} \bmod m_{i}$.
To show that this M is unique mod M we suppose that x_{1} and x_{2} are both solutions. Then for each i we have $x_{1} \equiv a_{i} \equiv x_{2} \bmod m_{i}$ and so $m_{i} \mid\left(x_{1}-x_{2}\right)$. But then since the m_{i} are pairwise coprime we have $M \mid\left(x_{1}-x_{2}\right)$ and so $x_{1} \equiv x_{2} \bmod M$.
$\mathcal{Q E D}$
Note 1: When solving $M_{i} y_{i} \equiv 1 \bmod m_{i}$ we should always reduce M_{i} first. This can help see the solution more easily. The solution may not be obvious though, but it's just a linear congruence and can be solved with the Euclidean Algorithm.
Note 2: If one (or more) of the linear congruences has a coefficient in front of the x then we must solve those linear congruences for x separately first.
Note 3: In addition if the m_{i} are not pairwise coprime then solutions may or may not exist and may or may not be unique, the Chinese Remainder Theorem says nothing.
4. Example: Consider the system:

$$
\begin{aligned}
& x \equiv 2 \bmod 6 \\
& x \equiv 4 \bmod 7 \\
& x \equiv 3 \bmod 25
\end{aligned}
$$

The CRT states that there is a unique solution modulo $(6)(7)(25)=1050$.

- Put $M_{1}=(7)(25)=175$ then we solve $M_{1} y_{1} \equiv 1 \bmod m_{1}$ which is $175 y_{1} \equiv 1 \bmod 6$ which reduces to $1 y_{1} \equiv 1 \bmod 6$ which has obvious solution $y_{1} \equiv 1 \bmod 6$.
- Put $M_{2}=(6)(25)=150$ then we solve $M_{2} y_{2} \equiv 1 \bmod m_{2}$ which is $150 y_{2} \equiv 1 \bmod 7$ which reduces to $3 y_{2} \equiv 1 \bmod 7$ which has solution $y_{2} \equiv 5 \bmod 7$.
- Put $M_{3}=(6)(7)=42$ then we solve $M_{3} y_{3} \equiv 1 \bmod m_{3}$ which is $42 y_{3} \equiv 1 \bmod 25$ which reduces to $17 y_{3} \equiv 1 \bmod 25$ which has solution $y_{3} \equiv 3 \bmod 25$.

Then we construct:

$$
M=(2)(175)(1)+(4)(150)(5)+(3)(42)(3)=3728 \equiv 578 \bmod 1050
$$

5. Application to Cryptography.

Much of this will be more clear when we have talked about the RSA algorithm but we can at least give a high-level overview of how the CRT is used in practice.
In the RSA algorithm Bob picks two large primes p and q. He picks e with $\operatorname{gcd}(e,(p-1)(q-1))=1$ and calculates d with $d e=1 \bmod (p-1)(q-1)$.
He then calculates $n=p q$ and makes n and e public. He keeps p, q, d private.
When he gets an encrypted message c from Alice he decrypts it to the message x via:

$$
x \equiv c^{d} \bmod p q
$$

This is a messy calculation because $p q$ is large.
So what actually happens is that Bob also stores d_{p} the reduced residue of $d \bmod p-1$ and d_{q} the reduced residue of $d \bmod q-1$.
Then observe that:

$$
x \equiv c^{d} \bmod p q
$$

iff

$$
\begin{aligned}
& x \equiv c^{d} \bmod p \\
& x \equiv c^{d} \bmod q
\end{aligned}
$$

iff

$$
\begin{aligned}
& x \equiv c^{d_{p}} \bmod p \\
& x \equiv c^{d_{q}} \bmod q
\end{aligned}
$$

This last iff is because when working with a prime moduli p, exponents work mod $p-1$ as we'll see. So what Bob actually does is calculates the reduced residue of $c^{d_{p}} \bmod p$ and $c^{d_{q}} \bmod q$ and then uses the CRT to solve for x.

