1. **Introduction:** John Pollard invented the Rho factorization algorithm in 1975. It does a fairly fast job for numbers with small prime factors, even if those numbers themselves are big, and it has a very small memory footprint, so it’s a useful tool to do some initial probing.

2. **Idea:** Given some \(n \in \mathbb{Z} \), suppose \(p \) is an unknown factor of \(n \). The goal is to find integers \(x_0, x_1, ..., x_s \) which are distinct mod \(n \) but not mod \(p \). Once we have done this then we have some \(i, j \) with \(x_j \equiv x_i \pmod{n} \) and \(x_j \equiv x_i \pmod{p} \). At this point note that \(p | (x_j - x_i) \) and \(p | n \). Consider now that \(\gcd(x_j - x_i, n) \) is a divisor of \(n \) but is greater than or equal to \(p \) since \(p | (x_j - x_i) \) and \(p | n \).

To find such \(x_i \) and \(x_j \) we pick an initial \(x_0 \) and define \(f(x) = x^2 + 1 \). We then take \(x_1 = f(x_0) \) reduced \(\pmod{n} \), \(x_2 = f(x_1) \) reduced \(\pmod{n} \), and so on. This basically generates a list of pseudorandom numbers mod \(n \). Since we’re examining differences mod \(n \) and mod \(p \), and since \(p \) is assumed to be quite small, it’s sensible that we might obtain \(x_i \) and \(x_j \) which are congruent mod \(p \) fairly quickly while still being incongruent mod \(n \).

However it’s still not reasonable to check all possible \(x_i \) and \(x_j \) as we go. Consider our sequence \(x_0, x_1, x_2, ... \) taken mod \(p \). We know for a fact that eventually \(x_j \equiv x_i \pmod{p} \) for \(j > i \) because eventually we run out of options mod \(p \). At this point the numbers repeat mod \(p \) every \(j - i \) steps. in other words \(x_\alpha \equiv x_\beta \pmod{p} \) when \((j - i) | (\alpha - \beta) \) and \(\alpha, \beta \geq i \).

Suppose \(s \) is the smallest multiple of \(j - i \) with \(s \geq i \) then observe that \(x_{2s} \equiv x_s \pmod{p} \) because \((j - i) | (2s - s) \) and \(2s, s \geq i \).

The practical result of this is that we assign \(x_0 \) and calculate \(x_1, x_2, x_3, ... \) but only check \(x_{2s} \) and \(x_s \) when possible.

3. **Pollard’s Rho Method:** Given an integer \(n \) which we assume has a small factor we choose some \(x_0 \) (often \(x_0 = 2 \)), and we choose \(f(x) = x^2 + 1 \) (this is typical). We generate \(x_1 = f(x_0) \) reduced \(\pmod{n} \), \(x_2 = f(x_1) \) reduced \(\pmod{n} \), and so on. At each even subscript \(x_{2s} \) we calculate \(\gcd(x_{2s} - x_s, n) \) and immediately upon obtaining a number greater than 1 we are done.

Note: The gcd we find is not necessarily our hypothesized \(p \), however \(p \) is a divisor of it, and it is not uncommon to actually obtain a prime.

Example: Let’s factor \(n = 1111 \). We set \(x_0 = 2 \) and \(f(x) = x^2 + 1 \). We then calculate:

\[
\begin{align*}
x_1 &= 5 \\
x_2 &= 26 \quad \gcd(26 - 5, 1111) = 1 \\
x_3 &= 677 \\
x_4 &= 598 \quad \gcd(598 - 26, 1111) = 11
\end{align*}
\]

We know 11 is a factor and we’re done.
Example: Let’s factor \(n = 1189 \). We set \(x_0 = 2 \) and \(f(x) = x^2 + 1 \). We then calculate:

\[
\begin{align*}
 x_1 &= 5 \\
 x_2 &= 26 & \text{gcd} (26 - 5, 1189) &= 1 \\
 x_3 &= 677 \\
 x_4 &= 565 & \text{gcd} (565 - 26, 1189) &= 1 \\
 x_5 &= 574 \\
 x_6 &= 124 & \text{gcd} (124 - 677, 1189) &= 1 \\
 x_7 &= 1109 \\
 x_8 &= 456 & \text{gcd} (456 - 565, 1189) &= 1 \\
 x_9 &= 1051 \\
 x_{10} &= 21 & \text{gcd} (21 - 574, 1189) &= 1 \\
 x_{11} &= 442 \\
 x_{12} &= 369 & \text{gcd} (369 - 124, 1189) &= 1 \\
 x_{13} &= 616 \\
 x_{14} &= 166 & \text{gcd} (166 - 1109, 1189) &= 41 \\
\end{align*}
\]

We know 41 is a factor and we’re done.

4. **Nomenclature:** The reason that this is called the Rho method is that when we obtain \(x_{2s} \equiv x_s \mod p \) we have found \(x_j \equiv x_i \mod p \) and we have a cycle. In the previous example \(x_{14} \equiv x_7 \mod 41 \) and hence because of the cyclic nature we have \(x_{15} \equiv x_8 \mod 41, x_{16} \equiv x_9 \mod 41 \) and so on. Our sequence of \(x_i \), taken mod \(p \), form the shape of the Greek letter \(\rho \).