
Math 406 Section 6.2: Fermat Pseudoprimes and Carmichael Numbers

1. Introduction: Given a number n it is incredibly useful to know if n is prime. This can of
course be determined by checking factors but this can be long and difficult. Instead it’s often
that we develop tests for primality and if a number passes a series of tests we might call it a
pseudoprime, indicating that it’s “almost” prime, meaning it passed our tests. Pseudoprimes
are useful wherever primes are because if they pass (many) tests for primality then they may
be used as subsitutes for primes.

2. Fermat Pseudoprimes:

(a) Introduction: Fermat’s Little Theorem tells us that if p is prime and a ∈ Z with p - b
then bp−1 ≡ 1 mod p. Consequently if n is a number then if we can find an b ∈ Z with
n - b and with bn−1 6≡ 1 mod n then n is not prime.

Example: Given the number n = 63 observe that if we choose b = 2 then we observe
that:

262 ≡ 4 6≡ 1 mod 63

so we can conclude that 63 is not prime using the base b = 2 to check.

Of course given a number n we might try some b and find that bn−1 ≡ 1 mod n in which
case we cannot conclude that n is not prime nor can we conclude that it is prime. However
we could say that it passed a test of primality using b = 2.

Example: Given the number n = 341 observe that if we choose b = 2 then we observe
that:

2340 ≡ 1 mod 341

so 341 passes our primality test using b = 2. Note that 341 = 11 · 31 is not prime.

(b) Definition: Let n be a positive composite integer. If b ∈ Z+ is such that bn−1 ≡ 1 mod n
then we say that n is a Fermat pseudoprime to the base b.

Example: The number n = 645 is a Fermat pseudoprime to the base b = 2 since
2644 ≡ 1 mod 645, as can be shown using methods from class. Note that 645 = 3 · 5 · 43
is not prime.

We might then wonder that if we were checking some composite n using a variety of b
are we guaranteed to find a base b with bn−1 6≡ 1 mod b, thereby proving n not prime?
In other words could some composite n pass our primality test with every possible b?



3. Absolute Fermat Pseudoprimes (Carmichael Numbers):

(a) Definition: A composite integer n which satisfies bn−1 ≡ 1 mod n for all b with gcd (n, b) =
1 is called an Absolute Fermat Pseudoprime or a Carmichael number.

Example: Consider n = 561 = 3·11·17. Suppose gcd (561, b) = 1, which then tells us that
gcd (3, b) = gcd (11, b) = gcd (17, b) = 1. By Fermat’s Little Theorem we then have b2 ≡
1 mod 3, b10 ≡ 1 mod 11, and b16 ≡ 1 mod 17. It follows that b560 ≡ (b2)280 ≡ 1 mod 3,
b560 ≡ (b10)56 ≡ 1 mod 11, and b560 ≡ (b16)35 ≡ 1 mod 17. Therefore b560 ≡ 1 mod 561.

Note: This last fact follows from the general fact that since each of the three primes
3, 11, 17 appear in the PF of b560 − 1 that the product must divide b560 − 1.

Examples: The first few Carmichael numbers are: 561, 1105, 1729, 2465, 2821, 6601,
8911, 10585, 15841, 29341. These are even more rare than primes!

Note: There are infinitely many Carmichael numbers. This was only proven in 1994.

(b) Theorem: If n = p1p2...pr with r ≥ 3 and with all distinct primes pi satisfying (pi− 1) |
(n− 1) for all i then n is a Carmichael number.

Proof: Suppose gcd (n, b) = 1, when then tells us that gcd (pi, b) = 1 for all i. By
Fermat’s Little Theorem we then have bpi−1 ≡ 1 mod pi for all i. Since for all i there
is some di with n − 1 = (pi − 1)di it follows that bn−1 ≡ (bpi−1)di ≡ 1 mod pi for all i.
Therefore bn−1 ≡ 1 mod n. QED
Note: The proof doesn’t look like it uses the fact that r ≥ 3. In fact, it turns out that
if n = pq for distinct primes p and q then it is impossibe to have (p − 1) | (n − 1) and
(q − 1) | (n − 1). Thus r = 2 is excluded in the sense that the remaining hypotheses
cannot be true.

Korselt’s Criterion (1899): The above theorem is an iff. The proof of the reverse
direction requires primitive roots (which we don’t have yet) and the Chinese Remainder
Theorem (which we do).

4. Future: Another common class of pseudoprimes are the Euler Pseudoprimes. We’ll encounter
these later.


