1. Introduction: Fermat's Little Theorem tells us that if p is a prime and if $p \nmid a$ then $a^{p-1} \equiv$ $1 \bmod p$. Since this is useful for reducing large powers of $a \bmod p$ it might be helpful if we had a version for when the modulus is not prime.

2. Preliminaries:

(a) Definition: Define the Euler Phi-Function $\phi: \mathbb{Z}^{+} \rightarrow \mathbb{Z}$ by $\phi(1)=1$ and otherwise $\phi(n)$ is the number of positive integers less than n and coprime to n.
Example: For example $\phi(10)=4$ because $1,3,7,9$ are coprime to 10 and $\phi(16)=8$ because $1,3,5,7,9,11,13,15,17$ are coprime to 16 .
Example: For a prime p we have $\phi(p)=p-1$.
(b) Definition: A reduced residue set $\bmod m$ is a set of $\phi(m)$ integers all of which are coprime to m and no two of which are congruent to each other mod m.
Note: This differs from a complete residue set in terms of the number of integers and the coprimality.
Example: If $m=10$ then $\{1,3,7,9\}$ is a reduced residue set. Another would be $\{11,-7,57,-11\}$.
(c) Theorem: Given a modulus m, if $\left\{r_{1}, r_{2}, \ldots, r_{\phi(m)}\right\}$ is a RRS $\bmod m$ and if $a \in \mathbb{Z}$ is such that $\operatorname{gcd}(a, m)=1$ then $\left\{a r_{1}, a r_{2}, \ldots, a r_{\phi(m)}\right\}$ is also a RRS.
Proof: First we show by contradiction that every element in the new set is coprime to m. If $\operatorname{gcd}\left(a r_{i}, m\right) \neq 1$ then some prime p divides both $a r_{i}$ and m. Well, $p \mid a r_{i}$ implies $p \mid a$ or $p \mid r_{i}$. If $p \mid r_{i}$ then along with $p \mid m$ we get $\operatorname{gcd}\left(r_{i}, m\right) \neq 1$ which contradicts the fact that our original set is a reduced residue set $\bmod m$. Thus $p \mid a$ but this along with $p \mid m$ contradicts $\operatorname{gcd}(m, a)=1$.
Second we show by contradiction that no two elements in the new set are congruent to each other mod m. If $a r_{i} \equiv a r_{j} \bmod m$ then because $\operatorname{gcd}(a, m)=1$ we may cancel to get $r_{i} \equiv r_{j} \bmod m$ which contradicts the fact that our original set is a reduced residue set $\bmod m$.
$\mathcal{Q} \mathcal{E} \mathcal{D}$
3. Euler's Theorem: Suppose m is a modulus and $a \in \mathbb{Z}$ with $\operatorname{gcd}(a, m)=1$. Then $a^{\phi(m)} \equiv$ $1 \bmod m$.
Note: In the case when m is prime we have $\phi(m)=m-1$ and we get Fermat's Little Theorem. Proof: Let $S=\left\{r_{1}, r_{2}, \ldots, r_{\phi(m)}\right\}$ be any RRS mod m, for example S could be the set of positive integers less than m and coprime to m. Then by the theorem above $S^{\prime}=\left\{a r_{1}, a r_{2}, \ldots, a r_{\phi(m)}\right\}$ is also a RRS. It follows that S and S^{\prime} consist of the same integers mod m, although probably in a different order. Thus we know:

$$
\begin{aligned}
\left(a r_{1}\right)\left(a r_{2}\right) \ldots\left(a r_{\phi(m)}\right) & \equiv r_{1} r_{2} \ldots r_{\phi(m)} \bmod m \\
a^{\phi(m)} r_{1} r_{2} \ldots r_{\phi(m)} & \equiv r_{1} r_{2} \ldots r_{\phi(m)} \bmod m \\
a^{\phi(m)} & \equiv 1 \bmod m
\end{aligned}
$$

The reason we can cancel all the r_{i} is that they are coprime to m because S is a RRS.
Example: To reduce $9^{453} \bmod 16$ we note that $\operatorname{gcd}(9,16)=1$ so Euler's Theorem tells us that $9^{\phi(16)} \equiv 1 \bmod 16$. Since $\phi(16)=8$ we have $9^{8} \equiv 1 \bmod 16$ and so:

$$
9^{453} \equiv 9^{8(56)+5} \equiv 9^{5} \equiv 9(81)(81) \equiv 9(1)(1) \equiv 9 \bmod 16
$$

Corollary: Suppose m is a modulus and $a \in \mathbb{Z}$ with $\operatorname{gcd}(a, m)=1$. Then $a^{\phi(m)-1}$ is an inverse of $a \bmod m$.
Proof: Follows immediately.

