1. **Introduction:** Fermat’s Little Theorem tells us that if \(p \) is a prime and if \(p \nmid a \) then \(a^{p-1} \equiv 1 \mod p \). Since this is useful for reducing large powers of \(a \mod p \) it might be helpful if we had a version for when the modulus is not prime.

2. **Preliminaries:**

 (a) **Definition:** Define the *Euler Phi-Function* \(\phi : \mathbb{Z}^+ \rightarrow \mathbb{Z} \) by \(\phi(1) = 1 \) and otherwise \(\phi(n) \) is the number of positive integers less than \(n \) and coprime to \(n \).

 Example: For example \(\phi(10) = 4 \) because \(1,3,7,9 \) are coprime to 10 and \(\phi(16) = 8 \) because \(1,3,5,7,9,11,13,15 \) are coprime to 16.

 Example: For a prime \(p \) we have \(\phi(p) = p - 1 \).

 (b) **Definition:** A *reduced residue set* mod \(m \) is a set of \(\phi(m) \) integers all of which are coprime to \(m \) and no two of which are congruent to each other mod \(m \).

 Note: This differs from a complete residue set in terms of the number of integers and the coprimality.

 Example: If \(m = 10 \) then \(\{1,3,7,9\} \) is a reduced residue set. Another would be \(\{11,-7,57,-11\} \).

 (c) **Theorem:** Given a modulus \(m \), if \(\{r_1,r_2,...,r_{\phi(m)}\} \) is a RRS mod \(m \) and if \(a \in \mathbb{Z} \) is such that \(\gcd(a,m) = 1 \) then \(\{ar_1, ar_2, ..., ar_{\phi(m)}\} \) is also a RRS.

 Proof: First we show by contradiction that every element in the new set is coprime to \(m \). If \(\gcd(ar_1,m) \neq 1 \) then some prime \(p \) divides both \(ar_1 \) and \(m \). Well, \(p \mid ar_i \) implies \(p \mid a \) or \(p \mid r_i \). If \(p \mid r_i \) then along with \(p \mid m \) we get \(\gcd(r_i,m) \neq 1 \) which contradicts the fact that our original set is a reduced residue set mod \(m \). Thus \(p \nmid a \) but this along with \(p \mid m \) contradicts \(\gcd(m,a) = 1 \).

 Second we show by contradiction that no two elements in the new set are congruent to each other mod \(m \). If \(ar_i \equiv ar_j \mod m \) then because \(\gcd(a,m) = 1 \) we may cancel to get \(r_i \equiv r_j \mod m \) which contradicts the fact that our original set is a reduced residue set mod \(m \). \(\blacksquare \)

3. **Euler’s Theorem:** Suppose \(m \) is a modulus and \(a \in \mathbb{Z} \) with \(\gcd(a,m) = 1 \). Then \(a^{\phi(m)} \equiv 1 \mod m \).

 Note: In the case when \(m \) is prime we have \(\phi(m) = m - 1 \) and we get Fermat’s Little Theorem.

 Proof: Let \(S = \{r_1, r_2, ..., r_{\phi(m)}\} \) be any RRS mod \(m \), for example \(S \) could be the set of positive integers less than \(m \) and coprime to \(m \). Then by the theorem above \(S' = \{ar_1, ar_2, ..., ar_{\phi(m)}\} \) is also a RRS. It follows that \(S \) and \(S' \) consist of the same integers mod \(m \), although probably in a different order. Thus we know:

\[
(\begin{align*}
 (ar_1)(ar_2)...(ar_{\phi(m)}) & \equiv r_1 r_2 ... r_{\phi(m)} \mod m \\
 a^{\phi(m)} r_1 r_2 ... r_{\phi(m)} & \equiv r_1 r_2 ... r_{\phi(m)} \mod m \\
 a^{\phi(m)} & \equiv 1 \mod m
\end{align*})
\]

The reason we can cancel all the \(r_i \) is that they are coprime to \(m \) because \(S \) is a RRS.

Example: To reduce \(9^{453} \mod 16 \) we note that \(\gcd(9,16) = 1 \) so Euler’s Theorem tells us that \(9^{\phi(16)} \equiv 1 \mod 16 \). Since \(\phi(16) = 8 \) we have \(9^8 \equiv 1 \mod 16 \) and so:

\[
9^{453} \equiv 9^{8(56)+5} \equiv 9^5 \equiv 9(81)(81) \equiv 9(1)(1) \equiv 9 \mod 16
\]

Corollary: Suppose \(m \) is a modulus and \(a \in \mathbb{Z} \) with \(\gcd(a,m) = 1 \). Then \(a^{\phi(m)-1} \) is an inverse of \(a \mod m \).

Proof: Follows immediately.