
Math 406 Section 7.1: Multiplicative Functions and φ

1. Introduction: We see that Euler’s Theorem is useful for doing modular exponentiation but
it relies upon us calculating φ(m) and it may not be clear how we can do this easily.

2. Function Definitions:

(a) Definition: A function is arithmetic if it is defined for all positive integers.

(b) Definition: An arithmetic function f is multiplicative if f(mn) = f(m)f(n) whenever
gcd (m,n) = 1.

(c) Definition: An arithmetic function f is completely multiplicative if f(mn) = f(m)f(n)
for all m,n.

Obviously a completely multiplicative function is multiplicative.

(d) Notes and Examples:

The function f(x) = x is completely multiplicative and hence multiplicative as is f(x) =
xr for any r. For example if f(x) = x3 then f(mn) = (mn)3 = m3n3 = f(m)f(n).

Most functions are not multiplicative or even completely multiplicative, for example
f(x) = x+ 1 is not, since f(3 · 5) 6= f(3)f(5).

Consider that it is difficult to think of a function which is multiplicative but not completely
multiplicative.

3. Theorem: If f is multiplicative then if n = pα1
1 ...pαk

k is the prime factorization of n then

f(n) = f (pα1
1 ...pαk

k ) = f (pα1
1 ) ...f (pαk

k )

Proof: Follows from the definition of multiplicative. QED

4. All About φ

(a) Theorem: For a prime p we have φ(p) = p− 1.
Proof: All of 1, 2, ..., p− 1 are coprime to p. QED

(b) Theorem: For a prime p we have φ(pα) = pα − pα−1 = pα
(

1− 1
p

)
.

Proof: Out of the integers 1, 2, 3, ..., pα the only ones not coprime to p are the multiples
of p itself. Those are p, 2p, 3p, ..., pα−1p and so there are pα−1 of these. The remaining
ones are coprime and there are pα − pα−1 of these. QED
Example: We have φ(125) = φ(53) = 53 − 52 = 100.

Example: We have φ(256) = φ(28) = 28 − 27 = 256− 128 = 128.



(c) Theorem: φ is multiplicative.
Proof: We wish to show that φ(mn) = φ(m)φ(n) when gcd (m,n) = 1. Basically what
we’ll do is count which of 1, 2, 3, ...,mn are coprime to mn. To do this let’s write these
numbers out as a table:

Row 1 =⇒ 0m+ 1 1m+ 1 2m+ 1 . . . (n− 1)m+ 1
Row 2 =⇒ 0m+ 2 1m+ 2 2m+ 2 . . . (n− 1)m+ 2

...
...

...
...

. . .
...

Row m =⇒ 0m+m 1m+m 2m+m . . . (n− 1)m+m = mn

Consider a particular row, say row r with 1 ≤ r ≤ m:

Row r =⇒ 0m+ r, 1m+ r, 2m+ r, ..., (n− 1)m+ r

An entry in this row looks like km+ r for 0 ≤ k ≤ n− 1.

If gcd (r,m) 6= 1 then gcd (km + r,m) = gcd (r,m) 6= 1 and then gcd (km + r,mn) 6= 1.
This means if gcd (r,m) 6= 1 we would not count any entry in that row since none of them
are coprime to mn.

Thus we can ignore all rows with gcd (r,m) 6= 1.

Let R with 1 ≤ R ≤ m be a row with gcd (R,m) = 1. Notice that every entry in such a
row is coprime to m since gcd (km+R,m) = gcd (R,m) = 1.

There are φ(m) such rows with gcd (R,m) = 1

In such a row R consider that the set {0, 1, 2, ..., n− 1} forms a complete set of residues
mod n and since gcd (m,n) = 1 so does the set {0m+R, 1m+R, 2m+R, ..., (n−1)m+R}
by a Theorem from class. It follows that out of these n integers φ(n) of them are coprime
to n. Since (by being in this row) they are coprime to m as well, they are coprime to mn.

In conclusion φ(m) rows with φ(n) entries per row gives us a total number coprime to
mn of φ(m)φ(n) and thus φ(mn) = φ(m)φ(n). QED

(d) Corollary: If n = pα1
1 ...pαk

k then:

φ(n) =

k∏
i=1

(
pαi − pα−1i

)
=

k∏
i=1

pα−1i (pi − 1)︸ ︷︷ ︸
(i)

=

k∏
i=1

pα
(

1− 1

pi

)
= n

k∏
i=1

(
1− 1

pi

)
︸ ︷︷ ︸

(ii)

Proof: Follows immediately by calculation. QED
Note: Each of these forms is useful in its own way, especially (i) and (ii).

Example: To find φ(432) we find 432 = 24 · 33 and so by (ii):

φ(432) = 432

(
1− 1

2

)(
1− 1

3

)
= 144

Example: To find φ(45375) we find 45375 = 3 · 53 · 112 and so by (ii):

φ(45375) = 45375

(
1− 1

3

)(
1− 1

5

)(
1− 1

11

)
= 22000



Example: Let’s find all n with φ(n) = 6. If pα appears in the prime factorization of
n then by (i) we have p − 1 | φ(n) and pα−1 | φ(n). Since φ(n) = 6 in order to have
p− 1 | 6 we can only have p− 1 = 1, 2, 3, 6 with p prime so only p = 2, 3, 7. Thus we have
n = 2a · 3b · 7c.

• Since 2a | n if a > 0 then we have 2a−1 | φ(n) = 6 and so possibilities are a = 0, 1, 2.

• Since 3b | n if b > 0 then we have 3b−1 | φ(n) = 6 and so possibilities are b = 0, 1, 2.

• Since 7c | n if c > 0 then we have 7c−1 | φ(n) = 6 and so possibilities are c = 0, 1.

Now then, not all of these will work since they’re necessary but not sufficient. it’s possible
to argue further but it’s easier to just check the cases now:

φ(20 · 30 · 70) = 1

φ(20 · 30 · 71) = 6

φ(20 · 31 · 70) = 2

φ(20 · 31 · 71) = 12

φ(20 · 32 · 70) = 6

φ(20 · 32 · 71) = 36

φ(21 · 30 · 70) = 1

φ(21 · 30 · 71) = 6

φ(21 · 31 · 70) = 2

φ(21 · 31 · 71) = 12

φ(21 · 32 · 70) = 6

φ(21 · 31 · 71) = 36

φ(22 · 30 · 70) = 2

φ(22 · 30 · 71) = 12

φ(22 · 31 · 70) = 4

φ(22 · 31 · 71) = 24

φ(22 · 32 · 70) = 12

φ(22 · 31 · 71) = 28

Thus n = 7, 9, 14, 18 are all that work.



5. Definition: For an arithmetic function f we define the divisor summatory function

F (n) =
∑
d|n

f(d)

Example: For a function f we would have f(12) = f(1) + f(2) + f(3) + f(4) + f(6) + f(12).

6. Theorem: If Φ is the divisor summatory function for φ:

Φ(n) =
∑
d|n

φ(d)

then Φ(n) = n.

Proof: For each d | n we define:

Cd = {m | 1 ≤ m ≤ n, gcd (m,n) = d}

By definition each 1 ≤ m ≤ n is in one and only one Cd and in fact m ∈ Cd iff gcd (m,n) = d
iff gcd (m/d, n/d) = 1 and hence |Cd| = φ(n/d) and so:

n =
∑
d|n

|Cd| =
∑

d | nφ(n/d)

However as d runs over all divisors of n so does n/d and so:

n =
∑

d | nφ(n/d) =
∑

d | nφ(d) = Φ(n)

QED
This is less confusing than it may look. Consider n = 20. The divisors of 20 are 1, 2, 4, 5, 10, 20.
If we take all of 1, 2, 3, ..., 20 and separate them according to their gcd with 20 into divisor
buckets:

Divisor d Cd φ(20/d)
1 C1 = {1, 3, 7, 9, 11, 13, 17, 19} φ(20/1) = φ(20) = 8
2 C2 = {2, 6, 14, 18} φ(20/2) = φ(10) = 4
4 C4 = {4, 8, 12, 16} φ(20/4) = φ(5) = 4
5 C5 = {5, 15} φ(20/5) = φ(4) = 2
10 C10 = {10} φ(20/10) = φ(2) = 1
20 C20 = {20} φ(20/20) = φ(1) = 1

Φ(20) = Total = 20


