1. Introduction: We see that Euler's Theorem is useful for doing modular exponentiation but it relies upon us calculating $\phi(m)$ and it may not be clear how we can do this easily.

2. Function Definitions:

(a) Definition: A function is arithmetic if it is defined for all positive integers.
(b) Definition: An arithmetic function f is multiplicative if $f(m n)=f(m) f(n)$ whenever $\operatorname{gcd}(m, n)=1$
(c) Definition: An arithmetic function f is completely multiplicative if $f(m n)=f(m) f(n)$ for all m, n.
Obviously a completely multiplicative function is multiplicative.
(d) Notes and Examples:

The function $f(x)=x$ is completely multiplicative and hence multiplicative as is $f(x)=$ x^{r} for any r. For example if $f(x)=x^{3}$ then $f(m n)=(m n)^{3}=m^{3} n^{3}=f(m) f(n)$.
Most functions are not multiplicative or even completely multiplicative, for example $f(x)=x+1$ is not, since $f(3 \cdot 5) \neq f(3) f(5)$.
Consider that it is difficult to think of a function which is multiplicative but not completely multiplicative.
3. Theorem: If f is multiplicative then if $n=p_{1}^{\alpha_{1}} \ldots p_{k}^{\alpha_{k}}$ is the prime factorization of n then

$$
f(n)=f\left(p_{1}^{\alpha_{1}} \ldots p_{k}^{\alpha_{k}}\right)=f\left(p_{1}^{\alpha_{1}}\right) \ldots f\left(p_{k}^{\alpha_{k}}\right)
$$

Proof: Follows from the definition of multiplicative.
4. All About ϕ
(a) Theorem: For a prime p we have $\phi(p)=p-1$.

Proof: All of $1,2, \ldots, p-1$ are coprime to p.
$\mathcal{Q E D}$
(b) Theorem: For a prime p we have $\phi\left(p^{\alpha}\right)=p^{\alpha}-p^{\alpha-1}=p^{\alpha}\left(1-\frac{1}{p}\right)$.

Proof: Out of the integers $1,2,3, \ldots, p^{\alpha}$ the only ones not coprime to p are the multiples of p itself. Those are $p, 2 p, 3 p, \ldots, p^{\alpha-1} p$ and so there are $p^{\alpha-1}$ of these. The remaining ones are coprime and there are $p^{\alpha}-p^{\alpha-1}$ of these.
$\mathcal{Q E D}$
Example: We have $\phi(125)=\phi\left(5^{3}\right)=5^{3}-5^{2}=100$.
Example: We have $\phi(256)=\phi\left(2^{8}\right)=2^{8}-2^{7}=256-128=128$.
(c) Theorem: ϕ is multiplicative.

Proof: We wish to show that $\phi(m n)=\phi(m) \phi(n)$ when $\operatorname{gcd}(m, n)=1$. Basically what we'll do is count which of $1,2,3, \ldots, m n$ are coprime to $m n$. To do this let's write these numbers out as a table:

Consider a particular row, say row r with $1 \leq r \leq m$:

$$
\text { Row } r \Longrightarrow 0 m+r, 1 m+r, 2 m+r, \ldots,(n-1) m+r
$$

An entry in this row looks like $k m+r$ for $0 \leq k \leq n-1$.
If $\operatorname{gcd}(r, m) \neq 1$ then $\operatorname{gcd}(k m+r, m)=\operatorname{gcd}(r, m) \neq 1$ and then $\operatorname{gcd}(k m+r, m n) \neq 1$. This means if $\operatorname{gcd}(r, m) \neq 1$ we would not count any entry in that row since none of them are coprime to $m n$.
Thus we can ignore all rows with $\operatorname{gcd}(r, m) \neq 1$.
Let R with $1 \leq R \leq m$ be a row with $\operatorname{gcd}(R, m)=1$. Notice that every entry in such a row is coprime to m since $\operatorname{gcd}(k m+R, m)=\operatorname{gcd}(R, m)=1$.
There are $\phi(m)$ such rows with $\operatorname{gcd}(R, m)=1$
In such a row R consider that the set $\{0,1,2, \ldots, n-1\}$ forms a complete set of residues $\bmod n$ and since $\operatorname{gcd}(m, n)=1$ so does the set $\{0 m+R, 1 m+R, 2 m+R, \ldots,(n-1) m+R\}$ by a Theorem from class. It follows that out of these n integers $\phi(n)$ of them are coprime to n. Since (by being in this row) they are coprime to m as well, they are coprime to $m n$. In conclusion $\phi(m)$ rows with $\phi(n)$ entries per row gives us a total number coprime to $m n$ of $\phi(m) \phi(n)$ and thus $\phi(m n)=\phi(m) \phi(n)$.
$\mathcal{Q E D}$
(d) Corollary: If $n=p_{1}^{\alpha_{1}} \ldots p_{k}^{\alpha_{k}}$ then:

$$
\phi(n)=\prod_{i=1}^{k}\left(p_{i}^{\alpha}-p_{i}^{\alpha-1}\right)=\underbrace{\prod_{i=1}^{k} p_{i}^{\alpha-1}\left(p_{i}-1\right)}_{(\mathrm{i})}=\prod_{i=1}^{k} p^{\alpha}\left(1-\frac{1}{p_{i}}\right)=\underbrace{n \prod_{i=1}^{k}\left(1-\frac{1}{p_{i}}\right)}_{(\mathrm{ii})}
$$

Proof: Follows immediately by calculation.
Note: Each of these forms is useful in its own way, especially (i) and (ii).
Example: To find $\phi(432)$ we find $432=2^{4} \cdot 3^{3}$ and so by (ii):

$$
\phi(432)=432\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)=144
$$

Example: To find $\phi(45375)$ we find $45375=3 \cdot 5^{3} \cdot 11^{2}$ and so by (ii):

$$
\phi(45375)=45375\left(1-\frac{1}{3}\right)\left(1-\frac{1}{5}\right)\left(1-\frac{1}{11}\right)=22000
$$

Example: Let's find all n with $\phi(n)=6$. If p^{α} appears in the prime factorization of n then by (i) we have $p-1 \mid \phi(n)$ and $p^{\alpha-1} \mid \phi(n)$. Since $\phi(n)=6$ in order to have $p-1 \mid 6$ we can only have $p-1=1,2,3,6$ with p prime so only $p=2,3,7$. Thus we have $n=2^{a} \cdot 3^{b} \cdot 7^{c}$.

- Since $2^{a} \mid n$ if $a>0$ then we have $2^{a-1} \mid \phi(n)=6$ and so possibilities are $a=0,1,2$.
- Since $3^{b} \mid n$ if $b>0$ then we have $3^{b-1} \mid \phi(n)=6$ and so possibilities are $b=0,1,2$.
- Since $7^{c} \mid n$ if $c>0$ then we have $7^{c-1} \mid \phi(n)=6$ and so possibilities are $c=0,1$.

Now then, not all of these will work since they're necessary but not sufficient. it's possible to argue further but it's easier to just check the cases now:

$$
\begin{aligned}
& \phi\left(2^{0} \cdot 3^{0} \cdot 7^{0}\right)=1 \\
& \phi\left(2^{0} \cdot 3^{0} \cdot 7^{1}\right)=6 \\
& \phi\left(2^{0} \cdot 3^{1} \cdot 7^{0}\right)=2 \\
& \phi\left(2^{0} \cdot 3^{1} \cdot 7^{1}\right)=12 \\
& \phi\left(2^{0} \cdot 3^{2} \cdot 7^{0}\right)=6 \\
& \phi\left(2^{0} \cdot 3^{2} \cdot 7^{1}\right)=36 \\
& \phi\left(2^{1} \cdot 3^{0} \cdot 7^{0}\right)=1 \\
& \phi\left(2^{1} \cdot 3^{0} \cdot 7^{1}\right)=6 \\
& \phi\left(2^{1} \cdot 3^{1} \cdot 7^{0}\right)=2 \\
& \phi\left(2^{1} \cdot 3^{1} \cdot 7^{1}\right)=12 \\
& \phi\left(2^{1} \cdot 3^{2} \cdot 7^{0}\right)=6 \\
& \phi\left(2^{1} \cdot 3^{1} \cdot 7^{1}\right)=36 \\
& \phi\left(2^{2} \cdot 3^{0} \cdot 7^{0}\right)=2 \\
& \phi\left(2^{2} \cdot 3^{0} \cdot 7^{1}\right)=12 \\
& \phi\left(2^{2} \cdot 3^{1} \cdot 7^{0}\right)=4 \\
& \phi\left(2^{2} \cdot 3^{1} \cdot 7^{1}\right)=24 \\
& \phi\left(2^{2} \cdot 3^{2} \cdot 7^{0}\right)=12 \\
& \phi\left(2^{2} \cdot 3^{1} \cdot 7^{1}\right)=28
\end{aligned}
$$

Thus $n=7,9,14,18$ are all that work.
5. Definition: For an arithmetic function f we define the divisor summatory function

$$
F(n)=\sum_{d \mid n} f(d)
$$

Example: For a function f we would have $f(12)=f(1)+f(2)+f(3)+f(4)+f(6)+f(12)$.
6. Theorem: If Φ is the divisor summatory function for ϕ :

$$
\Phi(n)=\sum_{d \mid n} \phi(d)
$$

then $\Phi(n)=n$.
Proof: For each $d \mid n$ we define:

$$
C_{d}=\{m \mid 1 \leq m \leq n, \operatorname{gcd}(m, n)=d\}
$$

By definition each $1 \leq m \leq n$ is in one and only one C_{d} and in fact $m \in C_{d}$ iff gcd $(m, n)=d$ iff $\operatorname{gcd}(m / d, n / d)=1$ and hence $\left|C_{d}\right|=\phi(n / d)$ and so:

$$
n=\sum_{d \mid n}\left|C_{d}\right|=\sum d \mid n \phi(n / d)
$$

However as d runs over all divisors of n so does n / d and so:

$$
n=\sum d\left|n \phi(n / d)=\sum d\right| n \phi(d)=\Phi(n)
$$

This is less confusing than it may look. Consider $n=20$. The divisors of 20 are $1,2,4,5,10,20$. If we take all of $1,2,3, \ldots, 20$ and separate them according to their gcd with 20 into divisor buckets:

Divisor d	C_{d}	$\phi(20 / d)$
1	$C_{1}=\{1,3,7,9,11,13,17,19\}$	$\phi(20 / 1)=\phi(20)=8$
2	$C_{2}=\{2,6,14,18\}$	$\phi(20 / 2)=\phi(10)=4$
4	$C_{4}=\{4,8,12,16\}$	$\phi(20 / 4)=\phi(5)=4$
5	$C_{5}=\{5,15\}$	$\phi(20 / 5)=\phi(4)=2$
10	$C_{10}=\{10\}$	$\phi(20 / 10)=\phi(2)=1$
20	$C_{20}=\{20\}$	$\phi(20 / 20)=\phi(1)=1$
	$\Phi(20)=$ Total $=20$	

