
Math 406 Section 7.2: The Sum and Number of Divisors

1. Introduction: Besides Euler’s φ function there are two other interesting arithmetic functions.

2. Definition: Define σ(n) to be the sum of all positive divisors of n

Definition: Define τ(n) to be the number of positive divisors of n.

Notice that:

σ(n) =
∑
d|n
d and τ(n) =

∑
d|n

1

3. Theorem:

If f is multiplicative then so is
∑
d|n
f(d). In other words if gcd (m,n) = 1 then:

F (mn) = F (m)F (n)

More specifically:

∑
d|mn

f(d) =
∑
d|m

f(d)
∑
d|n

f(d)

Proof:

Assume gcd (m,n) = 1 and we are interested in:

∑
d|mn

f(d)

Since gcd (m,n) = 1 every divisor d of mn may be separated into a product d = dmdn with
dm | m and dn | n and with gcd (dm, dn) = 1 and vice versa, if dm | m and dn | n then
d = dmdn is a divisor of mn.

Thus:

∑
d|mn

f(d) =
∑
dm|m
dn|n

f(dmdn)

=
∑
dm|m
dn|n

f(dm)f(dn)

=
∑
dm|m

f(dm)
∑
dn|n

f(dn)

QED
If this final step isn’t clear a single example can help. If m = 3 (with divisors 1, 3) and n = 35
(with divisors 1, 5, 7, 35) then observe that:



∑
dm|3

f(dm)
∑
dn|35

f(dn) = [f(1) + f(3)] [f(1) + f(5) + f(7) + f(35)]

= f(1)f(1) + f(1)f(5) + f(1)f(7) + f(1)f(35)

+ f(3)f(1) + f(3)f(5) + f(3)f(7) + f(3)f(35)

=
∑
dm|3
dn|35

f(dm)f(dn)



4. Corollary:

σ and τ are multiplicative.

Proof:

Follows since f(d) = d and f(d) = 1 are multiplicative and since σ(n) =
∑
d|n
d and τ(n) =

∑
d|n

1

as we saw before.

QED

5. Theorem (Calculation of σ):

We have σ(pα) = 1 + p+ ...+ pα = pα+1−1
p−1 and so:

σ(pα1
1 ...pαkk ) =

k∏
i=1

(
1 + p+ p2 + ...+ pαii

)
=

k∏
i=1

pαi+1
i − 1

pi − 1

Example:

We have:

σ(23 · 3 · 112) = (1 + 2 + 22 + 23)(1 + 3)(1 + 11 + 112) = 7980

6. Theorem (Calculation of τ):

We have τ(pα) = α+ 1 and so:

τ(pα1
1 ...pαkk ) =

k∏
i=1

(αi + 1)

Example:

We have:

τ(23 · 3 · 112) = (3 + 1)(1 + 1)(2 + 1) = 24



7. Note:

There are many ways that φ, σ, and τ arise. Here are a few examples:

Example:

Therea are no n with σ(n) = 10. This is because σ(n) is a product of geometric sums of the
form 1 + p+ ...+ pα which provides a severe restriction.

First note that it’s impossible to have p ≥ 11 since the geometric sums would be larger than
10. Thus we could only have p = 2, 3, 5, 7.

Then note that in order for the geometric sums to be less than or equal to 10:

• If p = 2 the geometric sums can only be 1, 3, 7.

• If p = 3 the geometric sums can only be 1, 4.

• If p = 5 the geometric sums can only be 1, 6.

• If p = 7 the geometric sums can only be 1, 8.

There is no way to get a product of these equal to 10.

Example:

There are infinitely many n with τ(n) = 10. This is because we can have, for example, n = pq4

for any distinct primes p, q and τ(n) = (1 + 1)(4 + 1) = 10.

Example:

If p is prime then σ(p) = φ(p) + τ(p).

This may seem suprising but really isn’t hard to prove, since σ(p) = p + 1 and φ(p) = p − 1
and τ(p) = 2 and the result follows.

There are other such relationships that arise for non-primes, there is one on the homework.


