Math 406 Section 7.2: The Sum and Number of Divisors

1. Introduction: Besides Euler's ϕ function there are two other interesting arithmetic functions.
2. Definition: Define $\sigma(n)$ to be the sum of all positive divisors of n

Definition: Define $\tau(n)$ to be the number of positive divisors of n.
Notice that:

$$
\sigma(n)=\sum_{d \mid n} d \quad \text { and } \quad \tau(n)=\sum_{d \mid n} 1
$$

3. Theorem:

If f is multiplicative then so is $\sum_{d \mid n} f(d)$. In other words if $\operatorname{gcd}(m, n)=1$ then:

$$
F(m n)=F(m) F(n)
$$

More specifically:

$$
\sum_{d \mid m n} f(d)=\sum_{d \mid m} f(d) \sum_{d \mid n} f(d)
$$

Proof:
Assume $\operatorname{gcd}(m, n)=1$ and we are interested in:

$$
\sum_{d \mid m n} f(d)
$$

Since $\operatorname{gcd}(m, n)=1$ every divisor d of $m n$ may be separated into a product $d=d_{m} d_{n}$ with $d_{m} \mid m$ and $d_{n} \mid n$ and with $\operatorname{gcd}\left(d_{m}, d_{n}\right)=1$ and vice versa, if $d_{m} \mid m$ and $d_{n} \mid n$ then $d=d_{m} d_{n}$ is a divisor of $m n$.
Thus:

$$
\begin{aligned}
\sum_{d \mid m n} f(d) & =\sum_{\substack{d_{m}\left|m \\
d_{n}\right| n}} f\left(d_{m} d_{n}\right) \\
& =\sum_{\substack{d_{m}\left|m \\
d_{n}\right| n}} f\left(d_{m}\right) f\left(d_{n}\right) \\
& =\sum_{d_{m} \mid m} f\left(d_{m}\right) \sum_{d_{n} \mid n} f\left(d_{n}\right)
\end{aligned}
$$

If this final step isn't clear a single example can help. If $m=3$ (with divisors 1,3) and $n=35$ (with divisors $1,5,7,35$) then observe that:

$$
\begin{aligned}
\sum_{d_{m} \mid 3} f\left(d_{m}\right) \sum_{d_{n} \mid 35} f\left(d_{n}\right) & =[f(1)+f(3)][f(1)+f(5)+f(7)+f(35)] \\
& =f(1) f(1)+f(1) f(5)+f(1) f(7)+f(1) f(35) \\
& +f(3) f(1)+f(3) f(5)+f(3) f(7)+f(3) f(35) \\
& =\sum_{\substack{d_{m}\left|3 \\
d_{n}\right| 35}} f\left(d_{m}\right) f\left(d_{n}\right)
\end{aligned}
$$

4. Corollary:

σ and τ are multiplicative.

Proof:

Follows since $f(d)=d$ and $f(d)=1$ are multiplicative and since $\sigma(n)=\sum_{d \mid n} d$ and $\tau(n)=\sum_{d \mid n} 1$ as we saw before.

5. Theorem (Calculation of σ):

We have $\sigma\left(p^{\alpha}\right)=1+p+\ldots+p^{\alpha}=\frac{p^{\alpha+1}-1}{p-1}$ and so:

$$
\sigma\left(p_{1}^{\alpha_{1}} \ldots p_{k}^{\alpha_{k}}\right)=\prod_{i=1}^{k}\left(1+p+p^{2}+\ldots+p_{i}^{\alpha_{i}}\right)=\prod_{i=1}^{k} \frac{p_{i}^{\alpha_{i}+1}-1}{p_{i}-1}
$$

Example:

We have:

$$
\sigma\left(2^{3} \cdot 3 \cdot 11^{2}\right)=\left(1+2+2^{2}+2^{3}\right)(1+3)\left(1+11+11^{2}\right)=7980
$$

6. Theorem (Calculation of τ):

We have $\tau\left(p^{\alpha}\right)=\alpha+1$ and so:

$$
\tau\left(p_{1}^{\alpha_{1}} \ldots p_{k}^{\alpha_{k}}\right)=\prod_{i=1}^{k}\left(\alpha_{i}+1\right)
$$

Example:

We have:

$$
\tau\left(2^{3} \cdot 3 \cdot 11^{2}\right)=(3+1)(1+1)(2+1)=24
$$

7. Note:

There are many ways that ϕ, σ, and τ arise. Here are a few examples:

Example:

Therea are no n with $\sigma(n)=10$. This is because $\sigma(n)$ is a product of geometric sums of the form $1+p+\ldots+p^{\alpha}$ which provides a severe restriction.
First note that it's impossible to have $p \geq 11$ since the geometric sums would be larger than 10. Thus we could only have $p=2,3,5,7$.

Then note that in order for the geometric sums to be less than or equal to 10 :

- If $p=2$ the geometric sums can only be $1,3,7$.
- If $p=3$ the geometric sums can only be 1,4 .
- If $p=5$ the geometric sums can only be 1,6 .
- If $p=7$ the geometric sums can only be 1,8 .

There is no way to get a product of these equal to 10 .

Example:

There are infinitely many n with $\tau(n)=10$. This is because we can have, for example, $n=p q^{4}$ for any distinct primes p, q and $\tau(n)=(1+1)(4+1)=10$.

Example:

If p is prime then $\sigma(p)=\phi(p)+\tau(p)$.
This may seem suprising but really isn't hard to prove, since $\sigma(p)=p+1$ and $\phi(p)=p-1$ and $\tau(p)=2$ and the result follows.
There are other such relationships that arise for non-primes, there is one on the homework.

