1. Introduction:

The definition of the sum of the divisors of a positive integer leads to the concept of a perfect number which is intrinsically connected to a Mersenne prime.

2. Definition:

A positive integer $n \in \mathbb{Z}^+$ is *perfect* if the sum of the positive divisors equals twice the integer, that is, $\sigma(n) = 2n$.

Definition:

A positive integer $n \in \mathbb{Z}^+$ is abundant if $\sigma(n) > 2n$ and is deficient if $\sigma(n) < 2n$.

Examples:

The integer n = 6 is perfect since $\sigma(6) = 1 + 2 + 3 + 6 = 12 = 2(6)$.

The integer n = 10 is deficient since $\sigma(10) = 1 + 2 + 5 + 10 = 17 < 2(10)$.

The integer n = 12 is abundant since $\sigma(12) = 1 + 2 + 3 + 4 + 6 + 12 = 28 > 2(12)$.

3. Finding Perfect Numbers:

It's unknown whether there are infinitely many perfect numbers and it's unknown whether there are any odd perfect numbers - all perfect numbers which have been found have been even.

However the following theorem applies to the even ones:

4. Theorem:

The integer $n \in \mathbb{Z}^+$ is an even perfect number iff

$$n = 2^{m-1}(2^m - 1)$$

for some $m \in \mathbb{Z}$ with $m \geq 2$ and $2^m - 1$ prime.

What this implies is that finding even perfect numbers boils down to finding such m. In other words if we check m = 2, 3, 4, ... then if $2^m - 1$ is prime then $n = 2^{m-1}(2^m - 1)$ is perfect.

Example:

When m = 2 we see $2^m - 1 = 3$ is prime and so $n = 2^{m-1}(2^m - 1) = 6$ is perfect.

Proof:

 \Leftarrow : Assume $m \ge 2$ with $2^m - 1$ prime. Since $2^m - 1$ is odd we have $gcd(2^{m-1}, 2^m - 1) = 1$ and so letting $n = 2^{m-1}(2^m - 1)$ we have:

$$\sigma(n) = \sigma(2^{m-1}(2^m - 1)) = \sigma(2^{m-1})\sigma(2^m - 1)$$

Since $2^m - 1$ is prime the divisors are 1 and $2^m - 1$ and so we know $\sigma(2^m - 1) = 1 + 2^m - 1 = 2^m$ and since $\sigma(p^k) = \frac{p^{k+1}-1}{p-1}$ we know $\sigma(2^{m-1}) = 2^m - 1$. Therefore

$$\sigma(n) = (2^m - 1)2^m = 2(2^m - 1)(2^{m-1}) = 2n$$

 $\Rightarrow:$ This direction is fairly lengthy and will be omitted. It's in the text if you're interested. \mathcal{QED}

So now the question is - when is $2^m - 1$ prime? Well one thing we can say is:

5. Theorem:

If $m \in \mathbb{Z}^+$ then if $2^m - 1$ is prime then so is m.

Proof:

If m is not prime with m = ab with a, b > 1 then observe that:

$$2^{m} - 1 = (2^{a} - 1) \left(2^{a(b-1)} + 2^{a(b-2)} + \dots + 2^{a} + 1 \right)$$

and so $2^m - 1$ is not prime.

The reverse is not true, for example m = 11 is prime but $2^{11} - 1 = 2047 = (23)(89)$ is not.

What this means is finding perfect numbers is equivalent to finding prime p with $2^p - 1$ also prime. This yields the following definitions:

Definition:

The m^{th} Mersenne number is $M_m = 2^m - 1$.

Example:

The fourth Mersenne number is $2^4 - 1 = 15$.

Definition:

If p is prime and if $2^p - 1$ is also prime then $M_p = 2^p - 1$ is a Mersenne prime.

It follows that Mersenne primes correspond to a perfect numbers (and somewhat correspond to primes):

$$[p \text{ prime}] \Leftarrow [2^p - 1 \text{ prime}] \Leftrightarrow [2^{p-1}(2^p - 1) \text{ perfect}]$$

Example:

p = 5 is prime and so is $2^p - 1 = 2^5 - 1 = 31$ and so it is a Mersenne prime. Consequently $n = 2^{p-1}(2^p - 1) = 2^4(2^5 - 1) = 496$ is perfect and in fact $\sigma(496) = 992 = 2(496)$.

Okay great, so if p is prime then how can we check if $2^p - 1$ is prime? We could just check all divisors but there's a slightly more slick way.

6. Theorem:

If p is an odd prime then any divisors of $M_p = 2^p - 1$ must have the form 2kp + 1 for $k \in \mathbb{Z}^+$. What this states is that if we start with a prime p and create $2^p - 1$ (which we don't know is prime) then we can check if it's prime by testing all divisors of this form.

Example:

Consider our p = 11 which gave us $2^{11} - 1 = 2047$. This theorem states that the only possibly divisors must have the form 2k(11) + 1 = 22k + 1 for $k \in \mathbb{Z}^+$. These are 23, 45 and we can stop checking there since $\sqrt{(2047)} \approx 45.24$ and so any larger divisor must have a smaller co-divisor. Then we see that $2047 \div 23 = 89$ and so it's not prime.

Example:

Consider p = 13 which gives us $2^{13} - 1 = 8191$. This theorem states that the only possibly divisors must have the form 2k(13) + 1 = 26k + 1 for $k \in \mathbb{Z}^+$. These are 27, 53, 79 and we can stop checking there since $\sqrt{(8191)} \approx 90.50$ and so any larger divisor must have a smaller co-divisor. Since none of these work we know that 8191 is prime.

Note:

In reality we don't need to check 27 since if 27 divided 8191 then so would 3 and 9 and neither of these have the right form.

Proof:

Omitted. The proof is not long but depends on a lengthly and obscure lemma related to the Euclidean Algorithm. $Q \mathcal{ED}$

QED