Math 406 Section 7.3: Perfect Numbers and Mersenne Primes

1. Introduction:
The definition of the sum of the divisors of a positive integer leads to the concept of a perfect
number which is intrinsically connected to a Mersenne prime.

2. Definition:

A positive integer n € Z% is perfect if the sum of the positive divisors equals twice the integer,
that is, o(n) = 2n.

Definition:

A positive integer n € Z* is abundant if o(n) > 2n and is deficient if o(n) < 2n.
Examples:

The integer n = 6 is perfect since 0(6) =1+2+ 346 = 12 = 2(6).

The integer n = 10 is deficient since o(10) =1+ 2+ 5+ 10 = 17 < 2(10).

The integer n = 12 is abundant since 0(12) =14+2+4+3+4+6 + 12 = 28 > 2(12).

3. Finding Perfect Numbers:

It’s unknown whether there are infinitely many perfect numbers and it’s unknown whether
there are any odd perfect numbers - all perfect numbers which have been found have been
even.

However the following theorem applies to the even ones:

4. Theorem:

The integer n € Z7T is an even perfect number iff
n=2m"12m 1)

for some m € Z with m > 2 and 2™ — 1 prime.

What this implies is that finding even perfect numbers boils down to finding such m. In other
words if we check m = 2, 3,4, ... then if 2" — 1 is prime then n = 2m~1(2™ — 1) is perfect.

Example:

When m = 2 we see 2™ — 1 = 3 is prime and so n = 2m~1(2™ — 1) = 6 is perfect.

Proof:

<: Assume m > 2 with 2™ — 1 prime. Since 2™ — 1 is odd we have ged (2™, 2™ — 1) = 1
and so letting n = 2m~1(2™ — 1) we have:

o(n) =oc2™ 2™ - 1)) = (2™ Ho(2™ — 1)

Since 2™ —1 is prime the divisors are 1 and 2™ —1 and so we know ¢ (2™ —1) = 14+2™—1 = 2™

and since o(p*) = % we know o(2m~1) = 2™ — 1. Therefore

o(n) = (2™ —1)2™ =2(2" - 1)(2™ ) =2n

=: This direction is fairly lengthy and will be omitted. It’s in the text if you're interested.
QED

So now the question is - when is 2™ — 1 prime? Well one thing we can say is:



5. Theorem:
If m € Z* then if 2™ — 1 is prime then so is m.
Proof:

If m is not prime with m = ab with a,b > 1 then observe that:
om 1= (20 1) (2‘“’7—1) F20=2 ey 1)

and so 2™ — 1 is not prime. QED
The reverse is not true, for example m = 11 is prime but 21 — 1 = 2047 = (23)(89) is not.

What this means is finding perfect numbers is equivalent to finding prime p with 2P — 1 also
prime. This yields the following definitions:

Definition:

The m™ Mersenne number is M,, = 2™ — 1.

Example:

The fourth Mersenne number is 24 — 1 = 15.

Definition:

If p is prime and if 2? — 1 is also prime then M, = 2P — 1 is a Mersenne prime.

It follows that Mersenne primes correspond to a perfect numbers (and somewhat correspond
to primes):
[p prime] < [2P — 1 prime] < [2”_1(2p —1) perfect]

Example:
p =5 is prime and so is 2 — 1 = 2% — 1 = 31 and so it is a Mersenne prime. Consequently
n =2P"1(2P — 1) = 24(25 — 1) = 496 is perfect and in fact 0(496) = 992 = 2(496).
Okay great, so if p is prime then how can we check if 2P — 1 is prime? We could just check all
divisors but there’s a slightly more slick way.

6. Theorem:
If p is an odd prime then any divisors of M,, = 2P — 1 must have the form 2kp + 1 for k € Z™.

What this states is that if we start with a prime p and create 2P — 1 (which we don’t know is
prime) then we can check if it’s prime by testing all divisors of this form.

Example:

Consider our p = 11 which gave us 2'' — 1 = 2047. This theorem states that the only possibly
divisors must have the form 2k(11)+1 = 22k +1 for k € Z*. These are 23, 45 and we can stop
checking there since \/(2047) ~ 45.24 and so any larger divisor must have a smaller co-divisor.
Then we see that 2047 + 23 = 89 and so it’s not prime.

Example:

Consider p = 13 which gives us 2! — 1 = 8191. This theorem states that the only possibly
divisors must have the form 2k(13) + 1 = 26k + 1 for k € Z*. These are 27, 53, 79 and we
can stop checking there since ﬂ8191) ~ 90.50 and so any larger divisor must have a smaller
co-divisor. Since none of these work we know that 8191 is prime.

Note:

In reality we don’t need to check 27 since if 27 divided 8191 then so would 3 and 9 and neither
of these have the right form.
Proof:

Omitted. The proof is not long but depends on a lengthly and obscure lemma related to the
Euclidean Algorithm. QED



