1. Introduction:

The definition of the sum of the divisors of a positive integer leads to the concept of a perfect number which is intrinsically connected to a Mersenne prime.

2. Definition:

A positive integer $n \in \mathbb{Z}^{+}$is perfect if the sum of the positive divisors equals twice the integer, that is, $\sigma(n)=2 n$.
Definition:
A positive integer $n \in \mathbb{Z}^{+}$is abundant if $\sigma(n)>2 n$ and is deficient if $\sigma(n)<2 n$.

Examples:

The integer $n=6$ is perfect since $\sigma(6)=1+2+3+6=12=2(6)$.
The integer $n=10$ is deficient since $\sigma(10)=1+2+5+10=17<2(10)$.
The integer $n=12$ is abundant since $\sigma(12)=1+2+3+4+6+12=28>2(12)$.

3. Finding Perfect Numbers:

It's unknown whether there are infinitely many perfect numbers and it's unknown whether there are any odd perfect numbers - all perfect numbers which have been found have been even.

However the following theorem applies to the even ones:

4. Theorem:

The integer $n \in \mathbb{Z}^{+}$is an even perfect number iff

$$
n=2^{m-1}\left(2^{m}-1\right)
$$

for some $m \in \mathbb{Z}$ with $m \geq 2$ and $2^{m}-1$ prime.
What this implies is that finding even perfect numbers boils down to finding such m. In other words if we check $m=2,3,4, \ldots$ then if $2^{m}-1$ is prime then $n=2^{m-1}\left(2^{m}-1\right)$ is perfect.

Example:

When $m=2$ we see $2^{m}-1=3$ is prime and so $n=2^{m-1}\left(2^{m}-1\right)=6$ is perfect.
Proof:
\Leftarrow : Assume $m \geq 2$ with $2^{m}-1$ prime. Since $2^{m}-1$ is odd we have $\operatorname{gcd}\left(2^{m-1}, 2^{m}-1\right)=1$ and so letting $n=2^{m-1}\left(2^{m}-1\right)$ we have:

$$
\sigma(n)=\sigma\left(2^{m-1}\left(2^{m}-1\right)\right)=\sigma\left(2^{m-1}\right) \sigma\left(2^{m}-1\right)
$$

Since $2^{m}-1$ is prime the divisors are 1 and $2^{m}-1$ and so we know $\sigma\left(2^{m}-1\right)=1+2^{m}-1=2^{m}$ and since $\sigma\left(p^{k}\right)=\frac{p^{k+1}-1}{p-1}$ we know $\sigma\left(2^{m-1}\right)=2^{m}-1$. Therefore

$$
\sigma(n)=\left(2^{m}-1\right) 2^{m}=2\left(2^{m}-1\right)\left(2^{m-1}\right)=2 n
$$

\Rightarrow : This direction is fairly lengthy and will be omitted. It's in the text if you're interested. $\mathcal{Q E D}$
So now the question is - when is $2^{m}-1$ prime? Well one thing we can say is:

5. Theorem:

If $m \in \mathbb{Z}^{+}$then if $2^{m}-1$ is prime then so is m.

Proof:

If m is not prime with $m=a b$ with $a, b>1$ then observe that:

$$
2^{m}-1=\left(2^{a}-1\right)\left(2^{a(b-1)}+2^{a(b-2)}+\ldots+2^{a}+1\right)
$$

and so $2^{m}-1$ is not prime.
$\mathcal{Q E D}$
The reverse is not true, for example $m=11$ is prime but $2^{11}-1=2047=(23)(89)$ is not.
What this means is finding perfect numbers is equivalent to finding prime p with $2^{p}-1$ also prime. This yields the following definitions:

Definition:

The $m^{\text {th }}$ Mersenne number is $M_{m}=2^{m}-1$.

Example:

The fourth Mersenne number is $2^{4}-1=15$.

Definition:

If p is prime and if $2^{p}-1$ is also prime then $M_{p}=2^{p}-1$ is a Mersenne prime.
It follows that Mersenne primes correspond to a perfect numbers (and somewhat correspond to primes):

$$
[p \text { prime }] \Leftarrow\left[2^{p}-1 \text { prime }\right] \Leftrightarrow\left[2^{p-1}\left(2^{p}-1\right) \text { perfect }\right]
$$

Example:

$p=5$ is prime and so is $2^{p}-1=2^{5}-1=31$ and so it is a Mersenne prime. Consequently $n=2^{p-1}\left(2^{p}-1\right)=2^{4}\left(2^{5}-1\right)=496$ is perfect and in fact $\sigma(496)=992=2(496)$.
Okay great, so if p is prime then how can we check if $2^{p}-1$ is prime? We could just check all divisors but there's a slightly more slick way.

6. Theorem:

If p is an odd prime then any divisors of $M_{p}=2^{p}-1$ must have the form $2 k p+1$ for $k \in \mathbb{Z}^{+}$. What this states is that if we start with a prime p and create $2^{p}-1$ (which we don't know is prime) then we can check if it's prime by testing all divisors of this form.

Example:

Consider our $p=11$ which gave us $2^{11}-1=2047$. This theorem states that the only possibly divisors must have the form $2 k(11)+1=22 k+1$ for $k \in \mathbb{Z}^{+}$. These are 23,45 and we can stop checking there since $\sqrt{(2047)} \approx 45.24$ and so any larger divisor must have a smaller co-divisor. Then we see that $2047 \div 23=89$ and so it's not prime.

Example:

Consider $p=13$ which gives us $2^{13}-1=8191$. This theorem states that the only possibly divisors must have the form $2 k(13)+1=26 k+1$ for $k \in \mathbb{Z}^{+}$. These are $27,53,79$ and we can stop checking there since $\sqrt{(8191)} \approx 90.50$ and so any larger divisor must have a smaller co-divisor. Since none of these work we know that 8191 is prime.

Note:

In reality we don't need to check 27 since if 27 divided 8191 then so would 3 and 9 and neither of these have the right form.

Proof:

Omitted. The proof is not long but depends on a lengthly and obscure lemma related to the Euclidean Algorithm.
$\mathcal{Q E D}$

