
Math 406 Section 7.3: Perfect Numbers and Mersenne Primes

1. Introduction:

The definition of the sum of the divisors of a positive integer leads to the concept of a perfect
number which is intrinsically connected to a Mersenne prime.

2. Definition:

A positive integer n ∈ Z+ is perfect if the sum of the positive divisors equals twice the integer,
that is, σ(n) = 2n.

Definition:

A positive integer n ∈ Z+ is abundant if σ(n) > 2n and is deficient if σ(n) < 2n.

Examples:

The integer n = 6 is perfect since σ(6) = 1 + 2 + 3 + 6 = 12 = 2(6).

The integer n = 10 is deficient since σ(10) = 1 + 2 + 5 + 10 = 17 < 2(10).

The integer n = 12 is abundant since σ(12) = 1 + 2 + 3 + 4 + 6 + 12 = 28 > 2(12).

3. Finding Perfect Numbers:

It’s unknown whether there are infinitely many perfect numbers and it’s unknown whether
there are any odd perfect numbers - all perfect numbers which have been found have been
even.

However the following theorem applies to the even ones:

4. Theorem:

The integer n ∈ Z+ is an even perfect number iff

n = 2m−1(2m − 1)

for some m ∈ Z with m ≥ 2 and 2m − 1 prime.

What this implies is that finding even perfect numbers boils down to finding such m. In other
words if we check m = 2, 3, 4, ... then if 2m − 1 is prime then n = 2m−1(2m − 1) is perfect.

Example:

When m = 2 we see 2m − 1 = 3 is prime and so n = 2m−1(2m − 1) = 6 is perfect.

Proof:

⇐: Assume m ≥ 2 with 2m − 1 prime. Since 2m − 1 is odd we have gcd (2m−1, 2m − 1) = 1
and so letting n = 2m−1(2m − 1) we have:

σ(n) = σ(2m−1(2m − 1)) = σ(2m−1)σ(2m − 1)

Since 2m−1 is prime the divisors are 1 and 2m−1 and so we know σ(2m−1) = 1+2m−1 = 2m

and since σ(pk) = pk+1−1
p−1 we know σ(2m−1) = 2m − 1. Therefore

σ(n) = (2m − 1)2m = 2(2m − 1)(2m−1) = 2n

⇒: This direction is fairly lengthy and will be omitted. It’s in the text if you’re interested.
QED
So now the question is - when is 2m − 1 prime? Well one thing we can say is:



5. Theorem:

If m ∈ Z+ then if 2m − 1 is prime then so is m.

Proof:

If m is not prime with m = ab with a, b > 1 then observe that:

2m − 1 = (2a − 1)
(

2a(b−1) + 2a(b−2) + ...+ 2a + 1
)

and so 2m − 1 is not prime. QED
The reverse is not true, for example m = 11 is prime but 211 − 1 = 2047 = (23)(89) is not.

What this means is finding perfect numbers is equivalent to finding prime p with 2p − 1 also
prime. This yields the following definitions:

Definition:

The mth Mersenne number is Mm = 2m − 1.

Example:

The fourth Mersenne number is 24 − 1 = 15.

Definition:

If p is prime and if 2p − 1 is also prime then Mp = 2p − 1 is a Mersenne prime.

It follows that Mersenne primes correspond to a perfect numbers (and somewhat correspond
to primes):

[p prime]⇐ [2p − 1 prime]⇔
[
2p−1(2p − 1) perfect

]
Example:

p = 5 is prime and so is 2p − 1 = 25 − 1 = 31 and so it is a Mersenne prime. Consequently
n = 2p−1(2p − 1) = 24(25 − 1) = 496 is perfect and in fact σ(496) = 992 = 2(496).

Okay great, so if p is prime then how can we check if 2p − 1 is prime? We could just check all
divisors but there’s a slightly more slick way.

6. Theorem:

If p is an odd prime then any divisors of Mp = 2p − 1 must have the form 2kp+ 1 for k ∈ Z+.

What this states is that if we start with a prime p and create 2p − 1 (which we don’t know is
prime) then we can check if it’s prime by testing all divisors of this form.

Example:

Consider our p = 11 which gave us 211− 1 = 2047. This theorem states that the only possibly
divisors must have the form 2k(11)+1 = 22k+1 for k ∈ Z+. These are 23, 45 and we can stop
checking there since

√
(2047) ≈ 45.24 and so any larger divisor must have a smaller co-divisor.

Then we see that 2047÷ 23 = 89 and so it’s not prime.

Example:

Consider p = 13 which gives us 213 − 1 = 8191. This theorem states that the only possibly
divisors must have the form 2k(13) + 1 = 26k + 1 for k ∈ Z+. These are 27, 53, 79 and we
can stop checking there since

√
(8191) ≈ 90.50 and so any larger divisor must have a smaller

co-divisor. Since none of these work we know that 8191 is prime.

Note:

In reality we don’t need to check 27 since if 27 divided 8191 then so would 3 and 9 and neither
of these have the right form.

Proof:

Omitted. The proof is not long but depends on a lengthly and obscure lemma related to the
Euclidean Algorithm. QED


