
Math 406 Section 8.3: Exponentiation Ciphers

1. Introduction: In section 8.1 we did C ≡ aP + b mod 26 but this is not the only operation
we could do.

First off we’ll modify the table of letters slightly:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

We can then group letters together with no ambiguity, for example JU can be assigned the
number 0920 or just 920. Without the modification it would be unclear what 111 meant, 1
followed by 11 or the reverse.

Also a reminder:

Fermat’s Little Theorem: If p is prime and a ∈ Z with p - a then ap−1 ≡ 1 mod p.

2. Exponentiation Ciphers:

(a) Encryption:

Let p be an odd prime and let e be a positive integer with gcd (e, p− 1) = 1.

We take the plaintext and group the letters into groups such that the value of no group
could possibly be greater than or equal to p.

So for example if p = 3001 then we group into blocks of 2 since the largest value would then
be 2525 < 3001 where 2525 corresponds to ZZ. If p = 377173 then we group into blocks
of 3 since the largest value would then be 252525 < 377173 where 252525 corresponds to
ZZZ.

We pad with junk letters at the end if needed so that the plaintext length is a multiple
of the block length. Traditionally X is used but it doesn’t matter.

For encryption Alice needs to know the encryption key pair (e, p) and then for a ciphertext
block C she does:

C ≡ P e mod p

Note that the result may not be convertible back to characters so we just send the num-
bers.

Example: Alice uses (e, p) = (479, 3001). To encrypt LOVENOTE she divides it up into
blocks of two and encrypts using

C ≡ P 479 mod 3001

LO VE NO TE

1114 2104 1314 1904
1114479 2104479 1314479 1904479

≡ 0169 0317 0017 1697

The overall cyphertext is then 0169 0317 0017 1697. the spaces aren’t necessary they
just make it clearer.

(b) Decryption:

This process is invertible since the fact that gcd (e, p − 1) guarantees that there exists
some d with de ≡ 1 mod p− 1 then then for a ciphertext block C we have:

Cd ≡ (P e)d ≡ P ed ≡ P 1+k(p−1) ≡ P (P p−1)k ≡ P (1)k ≡ P mod p

Here the fact that P p−1 ≡ 1 mod p is guaranteed by Fermat’s Little Theorem. Note that
p - P since P < p.



Thus for decryption Bob needs to know the decryption key pair (d, p).

Example: Bob knows (d, p) = (119, 3001) corresponding to Eve’s (e, p) = (479, 3001).
He receives 2672 0317 1665 2110 0246 1749 0017 2112 which he decrypts using:

P ≡ C119 mod 3001

2672 0317 1665 2110 0246 1749 0017 2112
2672119 0317119 1665119 2110119 0246119 1749119 0017119 2112119

≡ 1800 2104 2414 2017 1804 1105 1314 2223
SA VE YO UR SE LF NO WX

The message is obviously SAVE YOURSELF NOW padded with an X to make the length a
multiple of two characters.

3. Breaking Exponentiation Ciphers If Eve knows (e, p) she then knows p − 1 and then d
can be found by the Euclidean Algorithm. Just a reminder, this is because gcd (e, p− 1) = 1
and so Eve can find α, β with:

αe+ β(p− 1) = 1

and if she reduces mod p− 1 she gets:

αe ≡ 1 mod p− 1

and she can let d = α.

Example: If Alice uses (e, p) = (689, 3343).

If Eve finds this out then she knows that gcd (e, p − 1) = gcd (689, 3342) = 1 and so she uses
the Euclidean Algorithm to solve:

689α+ 3342β = 1

and finds:
689(941) + 3342(−194) = 1

She then reduces mod 3342 to get:

689(941) ≡ 1 mod 3342

and so d = 941. She can then decrypt anything Alice sends.

As long as Alice and Bob keep this information to themselves then things are safe, but if
Alice uses this same (e, p) for someone else then Bob can decrypt it. What we see happening
here is that knowing the encryption key pair means that the decryption key pair can be easily
calculated.

Would it be possible to make the encryption key pair public but have it still practically
impossible to calculate the decryption key pair?


