Here are a few basic attacks on RSA which may be used if the implementation is sloppy. In the real world things like this are accounted for but even so these give us some insight.

1. Common Modulus Attack

Suppose Bob1 and Bob2 choose the same modulus but coincidentally choose coprime encryption exponents. Thus we have $\left(n, e_{1}\right)$ and $\left(n, e_{2}\right)$ with $\operatorname{gcd}\left(e_{1}, e_{2}\right)=1$.
(a) Alice wants to send P to both of them so she sends $C_{1} \equiv P^{e_{1}} \bmod n$ to Bob1 and $C_{2} \equiv P^{e_{2}} \bmod n$ to Bob2.
(b) Suppose Eve gets ahold of both C_{1} and C_{2}.
(c) Since $\operatorname{gcd}\left(e_{1}, e_{2}\right)=1$ she can find α and β with $\alpha e_{1}+\beta e_{2}=1$ and then she can find P via:

$$
C_{1}^{\alpha} C_{2}^{\beta} \equiv\left(P^{e_{1}}\right)^{\alpha}\left(P^{e_{2}}\right)^{\beta} \equiv P^{\alpha e_{1}+\beta e_{2}} \equiv P^{1} \equiv P \bmod n
$$

2. Hastad Broadcast Attack

This generalizes but the simple version is to suppose that Bob1, Bob2, and Bob3 each use encryption exponent $e=3$ because they want encryption to be fast with a low power but they use pairwise coprime moduli n_{1}, n_{2}, and n_{3}.
(a) Alice wants to send P to all three of them so she sends $C_{1} \equiv P^{3} \bmod n_{1}$ to Bob1, $C_{2} \equiv P^{3} \bmod n_{2}$ to Bob2, and $C_{3} \equiv P^{3} \bmod n_{2}$ to Bob3.
(b) Suppose Eve obtains C_{1}, C_{2}, and C_{3}. She solves the following system via the CRT:

$$
\begin{aligned}
& x \equiv C_{1} \bmod n_{1} \\
& x \equiv C_{2} \bmod n_{2} \\
& x \equiv C_{3} \bmod n_{3}
\end{aligned}
$$

She obtains x, the least nonnegative residue $\bmod n_{1} n_{2} n_{3}$. But since $C_{1} \equiv P^{3} \bmod n_{1}$ and $C_{2} \equiv P^{3} \bmod n_{2}$ and $C_{3} \equiv P^{3} \bmod n_{3}$ Eve knows that $x \equiv P^{3} \bmod$ each of n_{1}, n_{2}, and n_{3} and then since they're pairwise coprime she knows that $x \equiv P^{3} \bmod n_{1} n_{2} n_{3}$.
(c) However $P<n_{1}, P<n_{2}$ and $P<n_{3}$ so in fact $P^{3}<n_{1} n_{2} n_{3}$ and so $P^{3}=x$ and so $P=\sqrt[3]{x}$.

3. Interception/Resend Attack

Suppose Bob uses public key (n, e) and private key (n, d).
(a) Alice wants to send P to Bob so she sends $C \equiv P^{e} \bmod n$.
(b) Eve intercepts this C Of course she can't read it but instead she chooses some r with $\operatorname{gcd}(r, n)=1$ and sends $\bar{C} \equiv C r^{e} \bmod n$ on to Bob.
(c) Bob receives \bar{C} and attempts to decrypt it, finding:

$$
(\bar{C})^{d} \equiv\left(C r^{e}\right)^{d} \equiv\left(P^{e} r^{e}\right)^{d} \equiv P^{e d} r^{e d} \equiv \operatorname{Pr} \bmod n
$$

Which looks like garbage to him so he throws it in the trash.
(d) Eve retrieves it and multiplies by r^{-1} to get P.

