1. Introduction (to Chapter 9):

Consider in basic algebra:

$$
3^{x}=7 \quad \Leftrightarrow \quad x=\log _{3} 7
$$

How might this function, if at all, in modular arithmetic, say mod 10 ?

$$
3^{x} \equiv 7 \bmod 10 \quad \Leftrightarrow \quad \text { Hmmm... }
$$

In this example we can find a solution $x=3$ by trial-and-error. But a different example fails to have a solution:

$$
9^{x} \equiv 7 \bmod 10 \quad \Leftrightarrow \quad H m m m \ldots \text { no such } x \ldots
$$

This notion, of determining when we can find powers in modular arithmetic and what those powers are, is important in mathematics and computer science and is known as the discrete logarithm problem. It is extremely difficult when the modulus is large. For example $35^{x} \equiv$ $14536 \bmod 34571$ has solution $x=458$ but that's not obvious at all.
The approach to understanding these problems is to go back to Euler's Theorem to see, for a given base, what sorts of results we can achieve by raising that base to different powers.

2. Nonpositive Powers

It's worth pausing to note that if $\operatorname{gcd}(a, m)=1$ then we know that a has a multiplicative inverse $\bmod m$ and so we can write the notation a^{-1} to refer to that inverse. In other words:

$$
a a^{-1} \equiv 1 \bmod m
$$

From here we can use all sorts of negative powers as long as we understand we mean inverses. So for example a^{-3} can be thought of either as $\left(a^{-1}\right)^{3}$ (the cube of the inverse of a) or $\left(a^{3}\right)^{-1}$ (the inverse of the cube of a). These are the same thing.
Everything is as expected with this notation.
In addition if we say that $a^{0} \equiv 1 \bmod m$ then we can make sense of all exponents when $\operatorname{gcd}(a, m)=1$.

3. The Order of an Integer:

Given a modulus m and an integer a with $\operatorname{gcd}(a, m)=1$ Euler's Theorem tells us that $a^{\phi(m)} \equiv 1 \bmod m$. It does not however tell us that $\phi(m)$ is the lowest power which yields 1 . This leads to the following:

(a) Definition:

Given a modulus m and an integer a with $\operatorname{gcd}(a, m)=1$ we define the order of $a \bmod$ m, denoted $\operatorname{ord}_{m} a$ to be the smallest positive integer n such that $a^{n} \equiv 1 \bmod m$.

Note:

The order of a depends not just on a but also on the modulus m. Sometimes we say simply "The order of a " when the modulus is clear but it's always relevant.

Example:

Consider $a=3$ and $m=11$. Euler's Theorem (and Fermat's Little Theorem) tell us that $3^{10} \equiv 1 \bmod 11$ but observe that 10 is not the first power for which we get 1 .
To find the order of $3 \bmod 11$ we observe:

$$
\begin{aligned}
& 3^{1} \equiv 1 \bmod 11 \\
& 3^{2} \equiv 9 \bmod 11 \\
& 3^{3} \equiv 5 \bmod 11 \\
& 3^{4} \equiv 4 \bmod 11 \\
& 3^{5} \equiv 1 \bmod 11
\end{aligned}
$$

Thus $\operatorname{ord}_{11} 3=5$.
The order of an integer underlies the pattern under which powers of the integer repeat. For example since $\operatorname{ord}_{11} 3=5$ this means that 3^{x} repeats when x repeats mod 5 , for example $3^{4} \equiv 3^{9} \bmod 11$ because $4 \equiv 9 \bmod 5$.
This idea leads to the following theorems. For all of the following assume gcd $(a, m)=1$.

(b) Theorem 1:

For $x \in \mathbb{Z}^{+}$and $\operatorname{gcd}(a, m)=1$ we have:

$$
a^{x} \equiv 1 \bmod m \Longleftrightarrow x \equiv 0 \bmod \operatorname{ord}_{m} a \Longleftrightarrow \operatorname{ord}_{m} a \mid x
$$

Example:

We have $3^{x} \equiv 1 \bmod 11$ iff $x \equiv 0 \bmod 5$ iff $5 \mid x$, so $x=\ldots,-15,-10,5,0,5,10,15, \ldots$.
Proof:
The second \Longleftrightarrow is just the defintion. For the first...
\Rightarrow Assume $a^{x} \equiv 1 \bmod m$ use the Division Algorithm to write $x=q\left(\operatorname{ord}_{m} a\right)+r$ and then we have:

$$
1 \equiv a^{x}=\left(a^{\operatorname{ord}_{m} a}\right)^{q} a^{r} \equiv a^{r} \bmod m
$$

and since $0 \leq r<\operatorname{ord}_{m} a$ we have $r=0$.
\Leftarrow If $\operatorname{ord}_{m} a \mid x$ then $x=\alpha \cdot \operatorname{ord}_{m} a$ for some $\alpha \in \mathbb{Z}$ and then $a^{x}=\left(a^{\operatorname{ord}_{m} a}\right)^{\alpha} \equiv 1 \bmod m$. $\mathcal{Q E D}$
(c) Corollary:

We have $\operatorname{ord}_{m} a \mid \phi(m)$.
Proof:
Since $a^{\phi(m)} \equiv 1 \bmod m$ this follows from the previous theorem.
$\mathcal{Q E D}$

Note:

This can be used to help find orders more quickly. For example if want to know ord ${ }_{m} a$ we need only check the divisors of $\phi(m)$.

Example:

To find $\operatorname{ord}_{11} 2$ we note $\phi(11)=10$ so we only need to check $2^{1}, 2^{2}$ and 2^{5} since if none of those work then it must be 2^{10}.
(d) Theorem 2:

We have $a^{x} \equiv a^{y} \bmod m$ iff $x \equiv y \bmod \operatorname{ord}_{m} a$.
Proof:
\Rightarrow If $a^{x} \equiv a^{y} \bmod m$ then WLOG assume $x>y$ and then cancel a^{y} (coprimality guarantees we can) to get $a^{x-y} \equiv 1 \bmod m$ and so then $\operatorname{ord}_{m} a \mid(x-y)$.
\Leftarrow If $\operatorname{ord}_{m} a \mid(x-y)$ then WLOG assume $x>y$ and then $x=y+\alpha \cdot \operatorname{ord}_{m} a$ for some $\alpha \in \mathbb{Z}^{+}$and then:

$$
a^{x}=a^{y}\left(a^{\operatorname{ord}_{m} a}\right)^{\alpha} \equiv a^{y} \bmod m
$$

Understanding:

This tells us that although the base works mod m, the exponent works $\bmod \operatorname{ord}_{m} a$.

Example:

For example when $m=20$ noting that $\operatorname{ord}_{20} 3=4$ and $\operatorname{ord}_{20} 9=2$ we can write:

$$
63^{102} \cdot 109^{83} \equiv 3^{102} \cdot 9^{83} \equiv 3^{2} \cdot 9^{1} \bmod 20
$$

Here the bases 63 and 109 reduce mod 20, the exponent 102 reduces $\bmod \operatorname{ord}_{20} 3=4$ and the exponent 83 reduces mod $\operatorname{ord}_{20} 9=2$.

4. Primitive Roots:

We know that given a modulus m and an integer a with $\operatorname{gcd}(a, m)=1$ we have $\operatorname{ord}_{m} a \leq \phi(m)$ (in fact it divides $\phi(m)$) but we are especially lucky when we have $\operatorname{ord}_{m} a=\phi(m)$. The reason why this is lucky will be explained soon.

(a) Definition:

Given a modulus m and an integer a with $\operatorname{gcd}(a, m)=1$ we say that a is a primitive root $\bmod m$ if $\operatorname{ord}_{m} a=\phi(m)$.

Example:

If $m=11$ then $a=6$ is a primitive root $\bmod 11$ because $\operatorname{ord}_{11} 6=10=\phi(11)$ which can be verified by noting that $6^{1} \equiv 6,6^{2} \equiv 3$ and $6^{5} \equiv 10$. Remember why we only need to check these, it's because we know the order divides $\phi(11)=10$ and so since it's not 1,2 or 5 it must be 10 .
(b) Importance:

Think of a primitive root as a "best possible" base in that powers of a primitive root will achieve all values coprime to m.

Example:

We saw that 6 is a primitive root mod 11 and observe that:

$$
\left\{6^{1}, 6^{2}, 6^{3}, 6^{4}, 6^{5}, 6^{6}, 6^{7}, 6^{8}, 6^{9}, 6^{10}\right\} \equiv \underbrace{\{6,3,7,9,10,5,8,4,2,1\}}_{\text {Got all the coprimes! }} \bmod 11
$$

This is clarified in the following theorem:
(c) Theorem:

If r is a primitive $\operatorname{rood} \bmod m$ then the set $\left\{r, r^{2}, r^{3}, \ldots, r^{\phi(m)}\right\}$ is a reduced residue set $\bmod m$.

Note:

Recall this means that this set contains $\phi(m)$ integers all of which are coprime to m and none of which are equivalent to each other $\bmod m$.

Proof:

They are all coprime to m since if $\operatorname{gcd}\left(m, r^{k}\right) \neq 1$ for some k then if some prime p divided both then it would divide r^{k} and hence it would divide r, contradicting gcd $(r, m)=1$. If we had $r^{i} \equiv r^{j} \bmod m$ then $i \equiv j \bmod \operatorname{ord}_{m} r=\phi(m)$ so that $i=j$ because each is nonstrictly between 1 and $\phi(m)$.
$\mathcal{Q} \mathcal{E} \mathcal{D}$

(d) Existence of Primitive Roots:

Interestingly if we start with a modulus m there may or may not be any primitive roots $\bmod m$. For example $m=8$ has no primitive roots since it can be easily checked that $\phi(8)=4$ but $\operatorname{ord}_{8} 1=1, \operatorname{ord}_{8} 3=2, \operatorname{ord}_{8} 5=2$ and $\operatorname{ord}_{8} 7=1$ and so we never get $\operatorname{ord}_{8} a=\phi(8)$.
However if there is a primitive root then usually there are several. We'll show how many in steps:
(e) Theorem:

Given a modulus m and an integer a with $\operatorname{gcd}(a, m)=1$ We have:

$$
\operatorname{ord}_{m}\left(a^{k}\right)=\frac{\operatorname{ord}_{m} a}{\operatorname{gcd}\left(\operatorname{ord}_{m} a, k\right)}
$$

Obscure Note:

For those in MATH403 this is the same as the result from cyclic groups which states that $\left|a^{k}\right|=\frac{|a|}{\operatorname{gcd}(|a|, k)}$.

Proof:

First, note that:

$$
\begin{aligned}
\left(a^{k}\right)^{\operatorname{ord}_{m} a / \operatorname{gcd}\left(\operatorname{ord}_{m} a, k\right)} & =\left(a^{\operatorname{ord}_{m} a}\right)^{k / \operatorname{gcd}\left(\operatorname{ord}_{m} a, k\right)} \\
& \equiv 1^{k / \operatorname{gcd}\left(\operatorname{ord}_{m} a, k\right)} \bmod m \\
& \equiv 1 \bmod m
\end{aligned}
$$

This tells us that:

$$
\operatorname{ord}_{m}\left(a^{k}\right) \leq \frac{\operatorname{ord}_{m} a}{\operatorname{gcd}\left(\operatorname{ord}_{m} a, k\right)}
$$

Second, note that by definition of the order of a^{k} we have:

$$
a^{k \operatorname{ord}_{m}\left(a^{k}\right)}=\left(a^{k}\right)^{\operatorname{ord}_{m}\left(a^{k}\right)} \equiv 1 \bmod m
$$

and so:

$$
\operatorname{ord}_{m} a \mid k \operatorname{ord}_{m}\left(a^{k}\right)
$$

From whence it follows that:

$$
\frac{\operatorname{ord}_{m} a}{\operatorname{gcd}\left(\operatorname{ord}_{m} a, k\right)} \left\lvert\, \frac{k}{\operatorname{gcd}\left(\operatorname{ord}_{m} a, k\right)} \operatorname{ord}_{m}\left(a^{k}\right)\right.
$$

Since the gcd of the two fractions is 1 we then know that:

$$
\left.\frac{\operatorname{ord}_{m} a}{\operatorname{gcd}\left(\operatorname{ord}_{m} a, k\right)} \right\rvert\, \operatorname{ord}_{m}\left(a^{k}\right)
$$

and so

$$
\frac{\operatorname{ord}_{m} a}{\operatorname{gcd}\left(\operatorname{ord}_{m} a, k\right)} \leq \operatorname{ord}_{m}\left(a^{k}\right)
$$

The two results together give us...

(f) Corollary:

Suppose r is a primitive root $\bmod m$, then r^{k} is a primitive root $\bmod m \operatorname{iff} \operatorname{gcd}(k, \phi(m))=$ 1.

Example:

We saw that $r=6$ is a primitive root mod 11. Thus we know that since $\phi(11)=10$ that all primitive roots can be found using 6^{k} with $\operatorname{gcd}(k, \phi(11))=\operatorname{gcd}(k, 10)=1$. This yields $k=1,3,7,9$ and thus the set of primitive roots $\bmod 11$ are $\left\{6^{1}, 6^{3}, 6^{7}, 6^{9}\right\} \equiv$ $\{6,7,8,2\} \bmod 11$.

Proof:

Well r^{k} is a primitive root iff $\operatorname{ord}_{m}\left(r^{k}\right)=\phi(m)=\operatorname{ord}_{m} r$ and by the theorem this is iff $\operatorname{gcd}\left(\operatorname{ord}_{m} r, k\right)=1$ which is iff $\operatorname{gcd}(\phi(m), k)=1$.
$\mathcal{Q E D}$
(g) Corollary:

If there is a primitive root $\bmod m$ then there are $\phi(\phi(m))$ of them.

Example:

There are $\phi(\phi(11))=\phi(10)=4$ primitive roots $\bmod 11$.

Proof:

Let r be one primitive root. Since powers of r form a reduced residue set mod m we know that all other integers coprime to m may be written as r^{k} for some k then by the previous corollary we know that r^{k} is also a primitive root iff $\operatorname{gcd}(k, \phi(m))=1$ and there are $\phi(\phi(m))$ such k.
$\mathcal{Q E D}$

