Pollard's Rho Method

Justin Wyss-Gallifent

February 27, 2023

1	Introduction	1
2	Motivation	2
3	Pollard's Rho Method	2
4	Nomenclature	3

1 Introduction

John Pollard invented the Rho factorization algorithm in 1975. It does a fairly fast job for numbers with small prime factors, even if those numbers themselves are big, and it has a very small memory footprint, so it's a useful tool to do some initial probing.

2 Motivation

Given some $n \in \mathbb{Z}$ our goal is to find some factor of n. Let's assume that n has a small prime factor called p. We won't necessarily find p but it will help us find a factor of n.

Suppose we could somehow obtain two integers x_i and x_j with $x_i \equiv x_j \mod p$ but $x_i \not\equiv x_j \mod n$. If we did obtain two such integers then since $p \mid (x_j - x_i)$ and $p \mid n$ and since $n \nmid (x_j - x_i)$ then $p \leq \gcd(x_j - x_i, n) \leq n$ and so $\gcd(x_j - x_i, n)$ would be a nontrivial factor of n.

But how can we possibly find such x_i and x_j ?

Suppose we set $x_1 = 1$ and $p(x) = x^2 + 1$ and then we construct a sequence by reducing:

$$x_2 \equiv p(x_1) \mod n$$

$$x_3 \equiv p(x_2) \mod n$$

$$\vdots \qquad \vdots$$

This generates a pseudorandom sequence mod n. But it repeats mod p, and this is key.

Since p is assumed to be small it's likely that we'll quickly find x_i and x_j with i < j such that $x_j - x_i \equiv 0 \mod p$ (because mod p there are only p distinct values) and $x_j - x_i \not\equiv 0 \mod n$. Of course we can't test for this because don't know p, but we can test $gcd(x_j - x_i, n)$ and see if it's something other than 1 and n.

But suppose along the way there are in fact x_i and x_j satisfying $x_i \equiv x_j \mod p$, as is likely. Then after index *i* they will repeat every j - i indices. For example if i = 22 and j = 27 then they'll repeat every 5 indices from i = 22 onwards.

In light of this suppose s is the smallest multiple of j - i which is greater than or equal to i. Then since 2s - s = s is a multiple of j - i it follows that $x_{2s} \equiv x_s \mod p$. With luck we'll also have $x_{2s} \not\equiv x_s \mod n$ and x_{2s} and x_s will do the job.

So how do we find s if we don't know i or j? Well, we just calculate our sequence but only test x_{2s} and x_s when possible.

Of course we can't actually test if $x_{2s} \equiv x_s \mod p$ since we don't know p but we can examine $gcd(x_{2s} - x_s, n)$ and see if it's other than 1 or n.

3 Pollard's Rho Method

Given an integer n which we assume has a small factor we choose some x_0 (often $x_0 = 2$), and we choose $p(x) = x^2 + 1$. We generate $x_1 = p(x_0)$ reduced mod n, $x_2 = p(x_1)$ reduced mod n, and so on. At each even subscript x_{2s} we calculate $gcd(x_{2s} - x_s, n)$ and immediately upon obtaining a number greater than 1 we are done.

Note 3.0.1. The use of $p(x) = x^2 + 1$ is classically used as it generates good pseudorandom numbers when taken with many moduli.

Note 3.0.2. The gcd we find is not necessarily our hypothesized p, however p is a divisor of it, and it is not uncommon to actually obtain a prime.

Note 3.0.3. It is possible (but in practice unlikely) that our repeats are in fact congruent mod n as well as p which yields $x_{2s} = x_x$ and a gcd of n. In such a case the algorithm fails. In such a case we try a different starting value or possibly a different polynomial.

Example 3.1. Let's factor n = 1111. We set $x_0 = 2$ and $p(x) = x^2 + 1$. We then calculate:

$x_1 \equiv 5 \mod 1111$	
$x_2 \equiv 26 \mod{1111}$	$\gcd(26 - 5, 1111) = 1$
$x_3 \equiv 677 \mod 1111$	
$x_4 \equiv 598 \mod 1111$	$\gcd(598 - 26, 1111) = 11$

We know 11 is a factor and we're done.

Example 3.2. Let's factor n = 1189. We set $x_0 = 2$ and $p(x) = x^2 + 1$. We then calculate:

$x_1 \equiv 5 \mod 1189$	
$x_2 \equiv 26 \mod 1189$	$\gcd(26-5,1189) = 1$
$x_3 \equiv 677 \mod 1189$	
$x_4 \equiv 565 \mod 1189$	$\gcd(565 - 26, 1189) = 1$
$x_5 \equiv 574 \mod 1189$	
$x_6 \equiv 124 \mod 1189$	$\gcd(124 - 677, 1189) = 1$
$x_7 \equiv 1109 \mod 1189$	
$x_8 \equiv 456 \mod 1189$	$\gcd(456 - 565, 1189) = 1$
$x_9 \equiv 1051 \mod 1189$	
$x_{10} \equiv 21 \mod 1189$	gcd(21 - 574, 1189) = 1
$x_{11} \equiv 442 \mod{1189}$	
$x_{12} \equiv 369 \mod 1189$	$\gcd(369 - 124, 1189) = 1$
$x_{13} \equiv 616 \mod 1189$	
$x_{14} \equiv 166 \mod 1189$	$\gcd(166 - 1109, 1189) = 41$

We know 41 is a factor and we're done.

4 Nomenclature

The reason that this is called the Rho method is that when we obtain $x_{2s} \equiv x_s \mod p$ we have found $x_j \equiv x_i \mod p$ and we have a cycle. In the previous example $x_{14} \equiv x_7 \mod 41$ and hence because of the cyclic nature we have $x_{15} \equiv x_8 \mod 41$, $x_{16} \equiv x_9 \mod 41$ and so on. Our sequence of x_i , taken mod p, form the shape of the Greek letter ρ .