Pollard's Rho Method

Justin Wyss-Gallifent

February 27, 2023
1 Introduction 1
2 Motivation 2
3 Pollard's Rho Method 2
4 Nomenclature 3

1 Introduction

John Pollard invented the Rho factorization algorithm in 1975. It does a fairly fast job for numbers with small prime factors, even if those numbers themselves are big, and it has a very small memory footprint, so it's a useful tool to do some initial probing.

2 Motivation

Given some $n \in \mathbb{Z}$ our goal is to find some factor of n. Let's assume that n has a small prime factor called p. We won't necessarily find p but it will help us find a factor of n.
Suppose we could somehow obtain two integers x_{i} and x_{j} with $x_{i} \equiv x_{j} \bmod p$ but $x_{i} \not \equiv x_{j} \bmod n$. If we did obtain two such integers then since $p \mid\left(x_{j}-x_{i}\right)$ and $p \mid n$ and since $n \nmid\left(x_{j}-x_{i}\right)$ then $p \leq \operatorname{gcd}\left(x_{j}-x_{i}, n\right) \leq n$ and so $\operatorname{gcd}\left(x_{j}-x_{i}, n\right)$ would be a nontrivial factor of n.
But how can we possibly find such x_{i} and x_{j} ?
Suppose we set $x_{1}=1$ and $p(x)=x^{2}+1$ and then we construct a sequence by reducing:

$$
\begin{aligned}
x_{2} \equiv p\left(x_{1}\right) & \bmod n \\
x_{3} \equiv p\left(x_{2}\right) & \bmod n \\
\vdots & \vdots
\end{aligned}
$$

This generates a pseudorandom sequence $\bmod n$. But it repeats mod p, and this is key.
Since p is assumed to be small it's likely that we'll quickly find x_{i} and x_{j} with $i<j$ such that $x_{j}-x_{i} \equiv 0 \bmod p\left(\right.$ because $\bmod p$ there are only p distinct values) and $x_{j}-x_{i} \not \equiv 0 \bmod n$. Of course we can't test for this because don't know p, but we can test $\operatorname{gcd}\left(x_{j}-x_{i}, n\right)$ and see if it's something other than 1 and n.
But suppose along the way there are in fact x_{i} and x_{j} satisfying $x_{i} \equiv x_{j} \bmod p$, as is likely. Then after index i they will repeat every $j-i$ indices. For example if $i=22$ and $j=27$ then they'll repeat every 5 indices from $i=22$ onwards.
In light of this suppose s is the smallest multiple of $j-i$ which is greater than or equal to i. Then since $2 s-s=s$ is a multiple of $j-i$ it follows that $x_{2 s} \equiv x_{s} \bmod p$. With luck we'll also have $x_{2 s} \not \equiv x_{s} \bmod n$ and $x_{2 s}$ and x_{s} will do the job.
So how do we find s if we don't know i or j ? Well, we just calculate our sequence but only test $x_{2 s}$ and x_{s} when possible.

Of course we can't actually test if $x_{2 s} \equiv x_{s} \bmod p$ since we don't know p but we can examine $\operatorname{gcd}\left(x_{2 s}-x_{s}, n\right)$ and see if it's other than 1 or n.

3 Pollard's Rho Method

Given an integer n which we assume has a small factor we choose some x_{0} (often $x_{0}=2$), and we choose $p(x)=x^{2}+1$. We generate $x_{1}=p\left(x_{0}\right)$ reduced $\bmod n, x_{2}=p\left(x_{1}\right)$ reduced $\bmod n$, and so on. At each even subscript $x_{2 s}$ we calculate $\operatorname{gcd}\left(x_{2 s}-x_{s}, n\right)$ and immediately upon obtaining a number greater than 1 we are done.
Note 3.0.1. The use of $p(x)=x^{2}+1$ is classically used as it generates good pseudorandom numbers when taken with many moduli.

Note 3.0.2. The gcd we find is not necessarily our hypothesized p, however p is a divisor of it, and it is not uncommon to actually obtain a prime.
Note 3.0.3. It is possible (but in practice unlikely) that our repeats are in fact congruent mod n as well as p which yields $x_{2 s}=x_{x}$ and a gcd of n. In such a case the algorithm fails. In such a case we try a different starting value or possibly a different polynomial.

Example 3.1. Let's factor $n=1111$. We set $x_{0}=2$ and $p(x)=x^{2}+1$. We then calculate:

$$
\begin{array}{lr}
x_{1} & \equiv 5 \quad \bmod 1111 \\
x_{2} & \equiv 26 \quad \bmod 1111 \\
x_{3} & \equiv 677 \quad \bmod 1111 \\
x_{4} & \equiv 598 \quad \bmod 1111
\end{array} \operatorname{gcd}(26-5,1111)=1
$$

We know 11 is a factor and we're done.
Example 3.2. Let's factor $n=1189$. We set $x_{0}=2$ and $p(x)=x^{2}+1$. We then calculate:

$$
\begin{array}{rlr}
x_{1} & \equiv 5 \quad \bmod 1189 & \\
x_{2} & \equiv 26 \quad \bmod 1189 & \operatorname{gcd}(26-5,1189)=1 \\
x_{3} & \equiv 677 \quad \bmod 1189 & \\
x_{4} & \equiv 565 \quad \bmod 1189 & \operatorname{gcd}(565-26,1189)=1 \\
x_{5} & \equiv 574 \quad \bmod 1189 & \\
x_{6} & \equiv 124 \quad \bmod 1189 & \operatorname{gcd}(124-677,1189)=1 \\
x_{7} & \equiv 1109 \quad \bmod 1189 & \\
x_{8} & \equiv 456 \quad \bmod 1189 & \operatorname{gcd}(456-565,1189)=1 \\
x_{9} & \equiv 1051 \quad \bmod 1189 & \\
x_{10} & \equiv 21 \quad \bmod 1189 & \operatorname{gcd}(21-574,1189)=1 \\
x_{11} & \equiv 442 \quad \bmod 1189 & \\
x_{12} & \equiv 369 \quad \bmod 1189 & \\
x_{13} & \equiv 616 \quad \bmod 1189 & \operatorname{gcd}(166-1109,1189)=41 \\
x_{14} & \equiv 166 \quad \bmod 1189 &
\end{array}
$$

We know 41 is a factor and we're done.

4 Nomenclature

The reason that this is called the Rho method is that when we obtain $x_{2 s} \equiv x_{s} \bmod p$ we have found $x_{j} \equiv x_{i} \bmod p$ and we have a cycle. In the previous example $x_{14} \equiv x_{7} \bmod 41$ and hence because of the cyclic nature we have $x_{15} \equiv x_{8} \bmod 41, x_{16} \equiv x_{9} \bmod 41$ and so on. Our sequence of x_{i}, taken $\bmod p$, form the shape of the Greek letter ρ.

