1. **Intermediate Value Theorem:** Suppose \(f : [a, b] \to \mathbb{R} \) is continuous and \(c \) is strictly between \(f(a) \) and \(f(b) \) then there exists some \(x_0 \in (a, b) \) such that \(f(x_0) = c \).

Proof: Note that if \(f(a) = f(b) \) then there is no such \(c \) so we only need to consider \(f(a) < c < f(b) \) and \(f(a) > c > f(b) \). Look at the case \(f(a) < c < f(b) \).

We’re going to use the Bisection Method to construct two sequences as follows:

Define \(a_1 = a \) and \(b_1 = b \). Then look at \(\frac{a_1 + b_1}{2} \) (the midpoint) and check:

- If \(f \left(\frac{a_1 + b_1}{2} \right) \leq c \) define \(a_2 = \frac{a_1 + b_1}{2} \) and \(b_2 = b_1 \).
- If \(f \left(\frac{a_1 + b_1}{2} \right) > c \) define \(a_2 = a_1 \) and \(b_2 = \frac{a_1 + b_1}{2} \).

We then repeat the procedure looking at the midpoint of \([a_2, b_2]\) and defining \(a_3 \) and \(b_3 \) accordingly and so on, to define sequences \(\{a_n\} \) and \(\{b_n\} \).

Observe that \(\{a_n\} \) is monotone increasing and bounded above by \(b \) and \(\{b_n\} \) is monotone decreasing and bounded below by \(a \). It follows that both converge. Moreover since

\[
\frac{b_n - a_n}{2} = \frac{1}{2^n}(b - a)
\]

we know that the difference converges to 0 and so they both converge to the same value, call it \(x_0 \). That is, \(\{a_n\} \to x_0 \) and \(\{b_n\} \to x_0 \). We then claim that \(f(x_0) = c \).

From continuity we have \(\{f(a_n)\} \to f(x_0) \) and \(\{f(b_n)\} \to f(x_0) \) and since for all \(n \) we have \(f(a_n) \leq c \) we must have \(f(x_0) \leq c \) and since for all \(n \) we have \(f(b_n) > c \) we must have \(f(x_0) \geq c \).

Thus \(f(x_0) = c \).

The proof for \(f(a) > c > f(b) \) is similar.

\[QED\]

2. **Examples:**

Example: Consider \(f : [1, 5] \to \mathbb{R} \) given by \(f(x) = x^2 + 4x - \frac{1}{2} \). Observe that \(f(1) = 4 \) and \(f(5) = 44.8 \).

Since \(c = 10 \) is strictly between 4 and 44.8 we know there is some \(x_0 \in (1, 5) \) with \(f(x_0) = 10 \).