1. **Introduction:** Just like with differentiability it’s helpful to establish rules for when functions are and are not integrable.

2. **Lemma:** Suppose \(f \) is integrable and \(\{P_n\} \) is an Archimedean sequence of partitions. Then if \(P^*_n \) is a refinement of \(P_n \) for each \(n \) then \(\{P^*_n\} \) is also an Archimedean sequence of partitions.

 Proof: We know that:
 \[
 \{U(f, P_n) - L(f, P_n)\} \to 0
 \]

 and by the Refinement Theorem:
 \[
 U(f, P^*_n) - L(f, P^*_n) \leq U(f, P_n) - L(f, P_n)
 \]

 Then by the Comparison Lemma we have
 \[
 \{U(f, P^*_n) - L(f, P^*_n)\} \to 0
 \]

3. **Theorem (Additivity Over Intervals):** Suppose \(f \) is integrable on \([a, b]\) and let \(c \in (a, b) \). Then \(f \) is integrable on \([a, c]\) and on \([c, b]\) and

 \[
 \int_a^b f = \int_a^c f + \int_c^b f
 \]

 Proof: Let \(\{P_n\} \) be an Archimedean sequence of partitions for \(f \). By the above lemma adding \(x = c \) to each \(P_n \) still results in an Archimedean sequence of partitions so we just assume that \(x = c \) is in each \(P_n \). Write \(P_n = P^*_n \cup P''_n \) where \(P^*_n \) and \(P''_n \) are the partitions induced by \(P_n \) on just \([a, c]\) and \([c, b]\) respectively. By the definition of upper and lower sums we have:

 \[
 U(f, P_n) - L(f, P_n) = [U(f, P^*_n) - L(f, P^*_n)] + [U(f, P''_n) - L(f, P''_n)]
 \]

 Since the second bracket on the right is nonnegative we have

 \[
 U(f, P_n) - L(f, P_n) \geq U(f, P^*_n) - L(f, P^*_n)
 \]

 So that by the Comparison Lemma \(\{P^*_n\} \) is an Archimedean sequence of partitions for \(f \) on \([a, c]\) so \(f \) is integrable on \([a, c]\) and \(U(f, P^*_n) \to \int_c^c f \). A similar argument shows that \(\{P''_n\} \) is an Archimedean sequence of partitions for \(f \) on \([c, b]\) so \(f \) is integrable on \([c, b]\) and \(U(f, P''_n) \to \int_c^b f \). Therefore since

 \[
 \{U(f, P_n)\} \to \int_a^b f
 \]

 and

 \[
 \{U(f, P_n)\} = \{U(f, P^*_n) + U(f, P''_n)\} \to \int_a^c f + \int_c^b f
 \]

 we have the result.
4. **Theorem (Monotonicity):** Suppose $f, g : [a, b] \to \mathbb{R}$ are integrable and for all $x \in [a, b]$ we have $f(x) \leq g(x)$. Then

$$\int_a^b f \leq \int_a^b g$$

Proof: Take an Archimedean sequence of partitions for f and one for g. For each n take the union P_n of the corresponding partitions. By the above lemma the resulting $\{P_n\}$ is an Archimedean sequence of partitions for both f and g. From here we get:

$$\{U(g, P_n) - U(f, P_n)\} \to \int_a^b g - \int_a^b f$$

However since $f(x) \leq g(x)$ we have $U(g, P_n) - U(f, P_n) \geq 0$ and therefore since $[0, \infty)$ is closed we have

$$\int_a^b g - \int_a^b f \geq 0$$

5. **Theorem (Linearity):** Suppose $f, g : [a, b] \to \mathbb{R}$ are integrable and $\alpha, \beta \in \mathbb{R}$. Then the function $\alpha f + \beta g$ is integrable on $[a, b]$ and

$$\int_a^b \alpha f + \beta g = \alpha \int_a^b f + \beta \int_a^b g$$

Proof: Omit (several pages).