1. State the following three definitions:
 (a) Define what it means for \(\{x_n\} \to x_0 \).
 (b) Define what it means for a set \(S \subseteq \mathbb{R} \) to be closed.
 (c) Define what it means for a function \(f : D \to \mathbb{R} \) to be uniformly continuous.

2. State the Intermediate Value Theorem. Pick one hypothesis, remove it, and give a counterexample showing the new statement is false.

3. The following is true for any convergent sequence \(\{x_n\} \to x_0 \):
 \[
 \text{If } x_0 > 0 \text{ then } \exists N \in \mathbb{N}, \forall n \geq N, x_n > 0.
 \]
 State the converse and give a counterexample showing that the converse is false.

4. Prove using \(\epsilon-N \) that:
 \[
 \left\{ 2 - \frac{1}{n} + \frac{3}{n^2} \right\} \to 2
 \]

5. Consider \(f : \mathbb{R} \to \mathbb{R} \) defined by
 \[
 f(x) = \begin{cases}
 2x & \text{if } x \leq 5 \\
 0 & \text{if } x > 5
 \end{cases}
 \]
 Prove using the sequence definition of continuity that \(f(x) \) is continuous at \(x = 3 \).

6. Suppose \(f : \mathbb{R} \to \mathbb{R} \) is continuous and \(x_0 \in \mathbb{R} \) with \(f(x_0) > 0 \). Show that there exists some \(\alpha > 0 \) such that \(f(x) > 0 \) for all \(x \in (x_0 - \alpha, x_0 + \alpha) \).

7. Suppose \(D \) is sequentially compact and \(f : D \to \mathbb{R} \) is continuous. Prove that \(f(D) \) is sequentially compact.

8. Suppose \(\{x_n\} \) is a bounded sequence which has the property that for all \(n \in \mathbb{N} \) there is some \(n_1 > n \) with \(x_{n_1} > x_n \) and some \(n_2 > n \) with \(x_{n_2} < x_n \). Prove that \(\{x_n\} \) does not converge.