
Math 410 Section 6.2: Integrability and the Archimedes-Riemann Theorem

1. Introduction: So far we know what the upper and lower Darboux integrals are but there are two
things to settle: What it means for a function to be integrable and if there’s a nicer way to actually
find this integral.

2. Integrability:

(a) Definition: Suppose f : [a, b] → R is bounded. We say that f is integrable on [a, b] if the upper
and lower Darboux integrals are equal. That is, if

∫ b

a

f =

∫ b

a

f

If this is the case we denote the value by
∫ b

a

f

(b) Note: We saw before that
∫ b

a
f ≤

∫ b

a
f always, integrability just means they’re equal.

(c) Example: We saw that f : [0, 2] → R defined by f(x) = 3 has
∫

2

0
3 = 6 and

∫

2

0
3 = 6 therefore

f(x) = 3 is integrable on [0, 2] and
∫

2

0
3 = 6.

(d) Example: We saw that f : [0, 1] → R defined by by f(x) = 1 if x ∈ Q and f(x) = 0 otherwise

has
∫

1

0
f = 0 and

∫

1

0
f = 1 therefore f is not integrable on [0, 1] and

∫

1

0
f is undefined.

3. The Archimedes Riemann Theorem

(a) Introduction: The AR-Theorem provides a more convenient way of determining if a function is
integrable without worrying about sup and inf. Loosely speaking it says that to prove integrability
all we need to do is obtain a sequence of partitions for which the lower sums increase and the
upper sums decrease and these converge to the same value and that value will be the integral.

(b) Lemma: Suppose f : [a, b] → R is bounded and P is a partition of [a, b]. Then

L(f, P ) ≤

∫ b

a

f ≤

∫ b

a

f ≤ U(f, P )

Proof: The left and right inequalities follow from the definition of the Darboux integrals and the
middle inequality was proved.



(c) Archimedes-Riemann Theorem: Suppose f : [a, b] → R is bounded. Then f is integrable on
[a, b] iff there is a sequence of partition {Pn} such that

{U(f, Pn)− L(f, Pn)} → 0

Moreover if {Pn} is such a sequence then

{L(f, Pn)} →
∫ b

a
f and {U(f, Pn)} →

∫ b

a
f

Such a sequence of partition is then called an Archimedian sequence of partitions.
Proof: There are three parts to this:

• Suppose we have such a sequence of partitions {Pn}. Then observe that for each n we have:

0 ≤

∫ b

a

f −

∫ b

a

f ≤ U(f, Pn)− L(f, Pn)

Taking the limit as n → ∞ then tells us that the right side goes to zero and so the middle
must be zero so

∫ b

a

f =

∫ b

a

f

• Suppose on the other hand that f is integrable on [a, b]. Let n ∈ N. Since
∫ b

a
f =

∫ b

a
f is the

least upper bound on the set L we know that
∫ b

a
f − 1

n
is not an upper bound so there is some

partition PL with

L(f, PL) >

∫ b

a

f −
1

n

Similiarly there is some partition PU with

U(f, PU ) <

∫ b

a

f +
1

n

Let Pn be the union of the two partitions which is therefore a refinement of both. Recalling
that when we refine a partition lower sums go up and upper sums go down we get

L(f, Pn) ≥ L(f, PL) >

∫ b

a

f −
1

n

and

L(f, Pn) ≤ U(f, PU ) <

∫ b

a

f +
1

n

It then follows that:

0 ≤ U(f, Pn)− L(f, Pn) <

[

∫ b

a

f +
1

n

]

−

[

∫ b

a

f −
1

n

]

=
2

n

So then {U(f, Pn)− L(f, Pn)} → 0 by the Comparison Lemma.

• Lastly suppose {Pn} is a sequence of partitions satisfying {U(f, Pn) − L(f, Pn)} → 0. Ob-
serving that from the Lemma and integrability we get

0 ≤ U(f, Pn)−

∫ b

a

f ≤ U(f, Pn)− L(f, Pn)

and so {U(f, Pn)} →
∫ b

a
f by the Comparison Lemma. A similar argument holds for {L(f, Pn)}.



(d) The Regular Partition: The most useful sequence of partitions is to just set Pn to divide [a, b]
into n intervals of equal size. That is:

Pn =

{

a, a+
b− a

n
, a+ 2

(

b− a

n

)

, ..., b

}

(e) Example: Consider f : [0, 4] → R defined by f(x) = 6x. If {Pn} is the regular sequence of
partitions then for each n we have:

L(f, Pn) = f(0)
1

n
+ f

(

4− 0

n

)

4

n
+ f

(

2 ·
4− 0

n

)

4

n
+ f

(

3 ·
4− 0

n

)

4

n
+ ...++f

(

(n− 1) ·
4− 0

n

)

4

n

=
4

n

[

6(0) + 6

(

4− 0

n

)

+ 6

(

2 ·
4− 0

n

)

+ 6

(

3 ·
4− 0

n

)

+ ...++6

(

(n− 1) ·
4− 0

n

)]

=
96

n2
[0 + 1 + 2 + ...+ (n− 1)]

=
96

n2

[

(n− 1)(n)

2

]

=
48(n− 1)

n

A similar argument shows that

U(f, Pn) =
48(n+ 1)

n

Therefore

{U(f, Pn)− L(f, Pn)} =

{

48(n+ 1)

n
−

48(n− 1)

n

}

=

{

96

n

}

→ 0

so f is integrable on [0, 4] and:

{U(f, Pn)} =

{

48(n+ 1)

n

}

=

{

48 +
48

n

}

→ 48 =

∫

4

0

6x

4. Some Integrable Functions

(a) Theorem (Mononotone Functions are Integrable): If f : [a, b] → R is monotone then f is
integrable.
Proof: The proof of this is similar to the previous example done more generally.

(b) Theorem (Step Functions are Integrable): A step function f : [a, b] → R is a function
defined by choosing a fixed partition {a = x0, x1, ..., xk = b} and insisting that f is constant on
each (xi−1, xi). If f : [a, b] → R is a step function then f is integrable.
Proof: Omitted.


