1. Introduction: So far we know what the upper and lower Darboux integrals are but there are two things to settle: What it means for a function to be integrable and if there's a nicer way to actually find this integral.

2. Integrability:

(a) Definition: Suppose $f:[a, b] \rightarrow \mathbb{R}$ is bounded. We say that f is integrable on $[a, b]$ if the upper and lower Darboux integrals are equal. That is, if

$$
\underline{\int_{a}^{b}} f=\overline{\int_{a}^{b}} f
$$

If this is the case we denote the value by

$$
\int_{a}^{b} f
$$

(c) Example: We saw that $f:[0,2] \rightarrow \mathbb{R}$ defined by $f(x)=3$ has $\underline{\int_{0}^{2} 3}=6$ and $\overline{\int_{0}^{2}} 3=6$ therefore $f(x)=3$ is integrable on $[0,2]$ and $\int_{0}^{2} 3=6$.
(d) Example: We saw that $f:[0,1] \rightarrow \mathbb{R}$ defined by by $f(x)=1$ if $x \in \mathbb{Q}$ and $f(x)=0$ otherwise has $\underline{\int_{0}^{1} f=0}$ and $\overline{\int_{0}^{1}} f=1$ therefore f is not integrable on $[0,1]$ and $\int_{0}^{1} f$ is undefined.

3. The Archimedes Riemann Theorem

(a) Introduction: The AR-Theorem provides a more convenient way of determining if a function is integrable without worrying about sup and inf. Loosely speaking it says that to prove integrability all we need to do is obtain a sequence of partitions for which the lower sums increase and the upper sums decrease and these converge to the same value and that value will be the integral.
(b) Lemma: Suppose $f:[a, b] \rightarrow \mathbb{R}$ is bounded and P is a partition of $[a, b]$. Then

$$
L(f, P) \leq \int_{a}^{b} f \leq \overline{\int_{a}^{b}} f \leq U(f, P)
$$

Proof: The left and right inequalities follow from the definition of the Darboux integrals and the middle inequality was proved.
(c) Archimedes-Riemann Theorem: Suppose $f:[a, b] \rightarrow \mathbb{R}$ is bounded. Then f is integrable on $[a, b]$ iff there is a sequence of partition $\left\{P_{n}\right\}$ such that

$$
\left\{U\left(f, P_{n}\right)-L\left(f, P_{n}\right)\right\} \rightarrow 0
$$

Moreover if $\left\{P_{n}\right\}$ is such a sequence then

$$
\left\{L\left(f, P_{n}\right)\right\} \rightarrow \int_{a}^{b} f \text { and }\left\{U\left(f, P_{n}\right)\right\} \rightarrow \int_{a}^{b} f
$$

Such a sequence of partition is then called an Archimedian sequence of partitions.
Proof: There are three parts to this:

- Suppose we have such a sequence of partitions $\left\{P_{n}\right\}$. Then observe that for each n we have:

$$
0 \leq \overline{\int_{a}^{b}} f-\underline{\int_{a}^{b}} f \leq U\left(f, P_{n}\right)-L\left(f, P_{n}\right)
$$

Taking the limit as $n \rightarrow \infty$ then tells us that the right side goes to zero and so the middle must be zero so

$$
\overline{\int_{a}^{b}} f=\underline{\int_{a}^{b}} f
$$

- Suppose on the other hand that f is integrable on $[a, b]$. Let $n \in \mathbb{N}$. Since $\int_{a}^{b} f=\underline{\int_{a}^{b}} f$ is the least upper bound on the set L we know that $\int_{a}^{b} f-\frac{1}{n}$ is not an upper bound so there is some partition P_{L} with

$$
L\left(f, P_{L}\right)>\int_{a}^{b} f-\frac{1}{n}
$$

Similiarly there is some partition P_{U} with

$$
U\left(f, P_{U}\right)<\int_{a}^{b} f+\frac{1}{n}
$$

Let P_{n} be the union of the two partitions which is therefore a refinement of both. Recalling that when we refine a partition lower sums go up and upper sums go down we get

$$
L\left(f, P_{n}\right) \geq L\left(f, P_{L}\right)>\int_{a}^{b} f-\frac{1}{n}
$$

and

$$
L\left(f, P_{n}\right) \leq U\left(f, P_{U}\right)<\int_{a}^{b} f+\frac{1}{n}
$$

It then follows that:

$$
0 \leq U\left(f, P_{n}\right)-L\left(f, P_{n}\right)<\left[\int_{a}^{b} f+\frac{1}{n}\right]-\left[\int_{a}^{b} f-\frac{1}{n}\right]=\frac{2}{n}
$$

So then $\left\{U\left(f, P_{n}\right)-L\left(f, P_{n}\right)\right\} \rightarrow 0$ by the Comparison Lemma.

- Lastly suppose $\left\{P_{n}\right\}$ is a sequence of partitions satisfying $\left\{U\left(f, P_{n}\right)-L\left(f, P_{n}\right)\right\} \rightarrow 0$. Observing that from the Lemma and integrability we get

$$
0 \leq U\left(f, P_{n}\right)-\int_{a}^{b} f \leq U\left(f, P_{n}\right)-L\left(f, P_{n}\right)
$$

and so $\left\{U\left(f, P_{n}\right)\right\} \rightarrow \int_{a}^{b} f$ by the Comparison Lemma. A similar argument holds for $\left\{L\left(f, P_{n}\right)\right\}$.
(d) The Regular Partition: The most useful sequence of partitions is to just set P_{n} to divide $[a, b]$ into n intervals of equal size. That is:

$$
P_{n}=\left\{a, a+\frac{b-a}{n}, a+2\left(\frac{b-a}{n}\right), \ldots, b\right\}
$$

(e) Example: Consider $f:[0,4] \rightarrow \mathbb{R}$ defined by $f(x)=6 x$. If $\left\{P_{n}\right\}$ is the regular sequence of partitions then for each n we have:

$$
\begin{aligned}
L\left(f, P_{n}\right) & =f(0) \frac{1}{n}+f\left(\frac{4-0}{n}\right) \frac{4}{n}+f\left(2 \cdot \frac{4-0}{n}\right) \frac{4}{n}+f\left(3 \cdot \frac{4-0}{n}\right) \frac{4}{n}+\ldots++f\left((n-1) \cdot \frac{4-0}{n}\right) \frac{4}{n} \\
& =\frac{4}{n}\left[6(0)+6\left(\frac{4-0}{n}\right)+6\left(2 \cdot \frac{4-0}{n}\right)+6\left(3 \cdot \frac{4-0}{n}\right)+\ldots++6\left((n-1) \cdot \frac{4-0}{n}\right)\right] \\
& =\frac{96}{n^{2}}[0+1+2+\ldots+(n-1)] \\
& =\frac{96}{n^{2}}\left[\frac{(n-1)(n)}{2}\right] \\
& =\frac{48(n-1)}{n}
\end{aligned}
$$

A similar argument shows that

$$
U\left(f, P_{n}\right)=\frac{48(n+1)}{n}
$$

Therefore

$$
\left\{U\left(f, P_{n}\right)-L\left(f, P_{n}\right)\right\}=\left\{\frac{48(n+1)}{n}-\frac{48(n-1)}{n}\right\}=\left\{\frac{96}{n}\right\} \rightarrow 0
$$

so f is integrable on $[0,4]$ and:

$$
\left\{U\left(f, P_{n}\right)\right\}=\left\{\frac{48(n+1)}{n}\right\}=\left\{48+\frac{48}{n}\right\} \rightarrow 48=\int_{0}^{4} 6 x
$$

4. Some Integrable Functions

(a) Theorem (Mononotone Functions are Integrable): If $f:[a, b] \rightarrow \mathbb{R}$ is monotone then f is integrable.
Proof: The proof of this is similar to the previous example done more generally.
(b) Theorem (Step Functions are Integrable): A step function $f:[a, b] \rightarrow \mathbb{R}$ is a function defined by choosing a fixed partition $\left\{a=x_{0}, x_{1}, \ldots, x_{k}=b\right\}$ and insisting that f is constant on each $\left(x_{i-1}, x_{i}\right)$. If $f:[a, b] \rightarrow \mathbb{R}$ is a step function then f is integrable.
Proof: Omitted.

