Math 411 Exam 1 Fall 2013

Directions: All problems must be completed using methods taught in the course. Each problem is worth 10 points for a total of 70 which will then be converted to a percentage.

- 1. Prove that \mathbb{R} is connected.
- 2. Suppose $\bar{u} \in \mathbb{R}^n$ with $||\bar{u}|| < 1$. Show that if $\bar{v} \in \mathbb{R}^n$ and $||\bar{v} \bar{u}|| < 1 ||\bar{u}||$ then $||\bar{v}|| < 1$.
- 3. Prove from the definition that the sequence $\left\{2 + \frac{1}{k}, 1 \frac{2}{k^2}\right\}$ converges to (2, 1).
- 4. Suppose that $f : \mathbb{R} \to \mathbb{R}$ is continuous such that $f(x) \ge 0$ for $x \in \mathbb{Q}$. Prove that $f(x) \ge 0$ for all $x \in \mathbb{R}$.
- 5. Prove from the definition that the closed ball $S = \{(x, y) \mid x^2 + y^2 \le 4\}$ is path connected. Make sure you show that your path is actually inside the set.
- 6. Prove from the definitions that if $A \subseteq \mathbb{R}^n$ is open in \mathbb{R}^n then $\mathbb{R}^n A$ is closed in \mathbb{R}^n .
- 7. Give an example of each of the following. No justification is required. Pictures suffice if you wish.
 - (a) A collection of open subsets of \mathbb{R} whose intersection is not open.
 - (b) Two pathwise connected sets whose intersection is not pathwise connected.
 - (c) A non-convex pathwise connected set.