Directions: All problems must be completed using methods taught in the course. Each problem is worth 10 points for a total of 70 which will then be converted to a percentage.

1. Prove that \mathbb{R} is connected.
2. Suppose $\bar{u} \in \mathbb{R}^{n}$ with $\|\bar{u}\|<1$. Show that if $\bar{v} \in \mathbb{R}^{n}$ and $\|\bar{v}-\bar{u}\|<1-\|\bar{u}\|$ then $\|\bar{v}\|<1$.
3. Prove from the definition that the sequence $\left\{2+\frac{1}{k}, 1-\frac{2}{k^{2}}\right\}$ converges to $(2,1)$.
4. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous such that $f(x) \geq 0$ for $x \in \mathbb{Q}$. Prove that $f(x) \geq 0$ for all $x \in \mathbb{R}$.
5. Prove from the definition that the closed ball $S=\left\{(x, y) \mid x^{2}+y^{2} \leq 4\right\}$ is path connected. Make sure you show that your path is actually inside the set.
6. Prove from the definitions that if $A \subseteq \mathbb{R}^{n}$ is open in \mathbb{R}^{n} then $\mathbb{R}^{n}-A$ is closed in \mathbb{R}^{n}.
7. Give an example of each of the following. No justification is required. Pictures suffice if you wish.
(a) A collection of open subsets of \mathbb{R} whose intersection is not open.
(b) Two pathwise connected sets whose intersection is not pathwise connected.
(c) A non-convex pathwise connected set.
