1. Define the set $A \subseteq \mathbb{R}^{2}$ by

$$
A=A_{1} \cup A_{2} \text { where } A_{1}=\{(0, y) \mid-1 \leq y \leq 1\} \text { and } A_{2}=\{(x, \sin (1 / x)) \mid 0<x \leq 1\}
$$

Define $f: A \rightarrow \mathbb{R}$ by

$$
f(x, y)= \begin{cases}1 & \text { for }(x, y) \in A_{1} \\ 2 & \text { for }(x, y) \in A_{2}\end{cases}
$$

Prove that f is not continuous on A.
2. Prove that if $S \subseteq \mathbb{R}^{n}$ has the Intermediate Value Property then it is connected.
3. Prove using the definition of open that the set $S=\{(x, y) \mid x>0, y>0\}$ is open in \mathbb{R}^{2}.
4. Suppose $a, b, c, d \in \mathbb{R}$ with $a<b \leq c<d$. Prove using the definition of pathwise-connected that the subset of \mathbb{R} given by $S=[a, b] \cup[c, d]$ is pathwise-connected iff $b=c$.
5. Give a specific example to show that it's possible to have nonzero sequence $\left\{\bar{u}_{k}\right\}$ in \mathbb{R}^{2} and nonzero $\bar{u}, \bar{v} \in \mathbb{R}^{2}$ with $\left\{\bar{u}_{k}\right\}$ converging to \bar{u} with $\bar{u} \perp \bar{v}$ but $\forall k, \bar{u}_{k} \not \perp \bar{v}$. Make sure to prove your claims on perpendicularity and convergence.
6. Show that $\mathbb{Q} \cap[0,1]$ is a connected subset of \mathbb{R}.
7. Give an example of each of the following. No justification is required.
(a) A collection of closed subsets of \mathbb{R}^{2} whose union is not closed in \mathbb{R}^{2}.
(b) A sequence in \mathbb{R}^{2} which does not converge but whose magnitude does converge.
(c) A subset of \mathbb{R} which is neither open nor closed in \mathbb{R}.
(d) A function $f: \mathbb{R} \rightarrow \mathbb{R}$ and an open set $A \subseteq \mathbb{R}$ such that $f^{-1}(A)$ is not open.
8. Let $A \subseteq \mathbb{R}^{n}$. Prove that A is open in \mathbb{R}^{n} iff $A \cap \partial A=\emptyset$.

