1. Define the set $A \subseteq \mathbb{R}^2$ by

$A = A_1 \cup A_2$ where $A_1 = \{(0, y) \mid -1 \leq y \leq 1\}$ and $A_2 = \{(x, \sin(1/x)) \mid 0 < x \leq 1\}$

Define $f : A \to \mathbb{R}$ by

$$f(x, y) = \begin{cases}
1 & \text{for } (x, y) \in A_1 \\
2 & \text{for } (x, y) \in A_2
\end{cases}$$

Prove that f is not continuous on A.

2. Prove that if $S \subseteq \mathbb{R}^n$ has the Intermediate Value Property then it is connected.

3. Prove using the definition of open that the set $S = \{(x, y) \mid x > 0, y > 0\}$ is open in \mathbb{R}^2.

4. Suppose $a, b, c, d \in \mathbb{R}$ with $a < b \leq c < d$. Prove using the definition of pathwise-connected that the subset of \mathbb{R} given by $S = [a, b] \cup [c, d]$ is pathwise-connected iff $b = c$.

5. Give a specific example to show that it’s possible to have nonzero sequence $\{\bar{u}_k\}$ in \mathbb{R}^2 and nonzero $\bar{u}, \bar{v} \in \mathbb{R}^2$ with $\{\bar{u}_k\}$ converging to \bar{u} with $\bar{u} \perp \bar{v}$ but $\forall k, \bar{u}_k \not\perp \bar{v}$. Make sure to prove your claims on perpendicularity and convergence.

6. Show that $\mathbb{Q} \cap [0, 1]$ is a connected subset of \mathbb{R}.

7. Give an example of each of the following. No justification is required.

 (a) A collection of closed subsets of \mathbb{R}^2 whose union is not closed in \mathbb{R}^2.
 (b) A sequence in \mathbb{R}^2 which does not converge but whose magnitude does converge.
 (c) A subset of \mathbb{R} which is neither open nor closed in \mathbb{R}.
 (d) A function $f : \mathbb{R} \to \mathbb{R}$ and an open set $A \subseteq \mathbb{R}$ such that $f^{-1}(A)$ is not open.

8. Let $A \subseteq \mathbb{R}^n$. Prove that A is open in \mathbb{R}^n iff $A \cap \partial A = \emptyset$.