1. Define the set $A \subseteq \mathbb{R}^2$ by

$$A = A_1 \cup A_2$$
 where $A_1 = \{(0, y) \mid -1 \le y \le 1\}$ and $A_2 = \{(x, \sin(1/x)) \mid 0 < x \le 1\}$

Define $f: A \to \mathbb{R}$ by

$$f(x,y) = \begin{cases} 1 & \text{for } (x,y) \in A_1 \\ 2 & \text{for } (x,y) \in A_2 \end{cases}$$

Prove that f is not continuous on A.

Outline of Solution:

The space is connected hence has the IVP. If f were continuous then the image would be an interval but it isn't.

2. Prove that if $S \subseteq \mathbb{R}^n$ has the Intermediate Value Property then it is connected.

Outline of Solution:

This is from the notes and book.

3. Prove using the definition of open that the set $S = \{(x, y) \mid x > 0, y > 0\}$ is open in \mathbb{R}^2 .

Outline of Solution:

For any $(x_0, y_0) \in S$ let $r = \min(x_0, y_0)$ and show that $B_r(x_0, y_0) \subseteq S$.

4. Suppose $a, b, c, d \in \mathbb{R}$ with $a < b \le c < d$. Prove using the definition of pathwise-connected that the subset of \mathbb{R} given by $S = [a, b] \cup [c, d]$ is pathwise-connected iff b = c.

Outline of Solution:

If b = c then $[a, b] \cup [c, d] = [a, d]$ is an interval and it's easy to show.

If b < c then show that if S were path connected then every point between b and c would need to be in S, a constradiction.

5. Give a specific example to show that it's possible to have nonzero sequence $\{\bar{u}_k\}$ in \mathbb{R}^2 and nonzero $\bar{u}, \bar{v} \in \mathbb{R}^2$ with $\{\bar{u}_k\}$ converging to \bar{u} with $\bar{u} \perp \bar{v}$ but $\forall k, \ \bar{u}_k \not\perp \bar{v}$. Make sure to prove your claims on perpendicularity and convergence.

Outline of Solution:

For example $\{\bar{u}_k\} = \{(1 + \frac{1}{k}, 1)\}$ and $\bar{v} = (1, 0)$.

6. Show that $\mathbb{Q} \cap [0,1]$ is a connected subset of \mathbb{R} .

Outline of Solution:

This problem had an error in that $\mathbb{Q} \cap [0, 1]$ is not a connected subset of \mathbb{R} . It is not connected because for example the open sets $(-\inf, \sqrt{2}/2)$ and $(\sqrt{2}/2, \inf)$ separate it.

- 7. Give an example of each of the following. No justification is required.
 - (a) A collection of closed subsets of \mathbb{R}^2 whose union is not closed in $\mathbb{R}^2.$

Outline of Solution:

For each n let S_n be the closed ball of radius $1 - \frac{1}{n}$ centered at the origin. Then the union of these is $B_1(0,0)$ which is not closed.

- (b) A sequence in ℝ² which does not converge but whose magnitude does converge.
 Outline of Solution: {((1 - 1/k) cos(k), (1 - 1/k) sin(k))}
- (c) A subset of ℝ which is neither open nor closed in ℝ.
 Outline of Solution:
 [1,2)
- (d) A function $f : \mathbb{R} \to \mathbb{R}$ and an open set $A \subseteq \mathbb{R}$ such that $f^{-1}(A)$ is not open. Outline of Solution:

You'll need to pick a non-continuous f.

8. Let $A \subseteq \mathbb{R}^n$. Prove that A is open in \mathbb{R}^n iff $A \cap \partial A = \emptyset$.

Outline of Solution:

Suppose A is open. By way of contradiction suppose $A \cap \partial A \neq \emptyset$ and thus $\exists \bar{x} \in A \cap \partial A$. Since $\bar{x} \in \partial A$ every $B_r(\bar{x})$ intersects A' which contradicts $\bar{x} \in A$ with A open.

Suppose $A \cap \partial A = \emptyset$. By way of contradiction suppose A is not open and so $\exists \bar{x} \in A$ such that no $B_r(\bar{x}) \subset A$, meaning every $B_r(\bar{x})$ intersects A' which means that $\bar{x} \in \partial A$ which contradicts $A \cap \partial A = \emptyset$.