1. Define the set $A \subseteq \mathbb{R}^{2}$ by

$$
A=A_{1} \cup A_{2} \text { where } A_{1}=\{(0, y) \mid-1 \leq y \leq 1\} \text { and } A_{2}=\{(x, \sin (1 / x)) \mid 0<x \leq 1\}
$$

Define $f: A \rightarrow \mathbb{R}$ by

$$
f(x, y)= \begin{cases}1 & \text { for }(x, y) \in A_{1} \\ 2 & \text { for }(x, y) \in A_{2}\end{cases}
$$

Prove that f is not continuous on A.

Outline of Solution:

The space is connected hence has the IVP. If f were continuous then the image would be an interval but it isn't.
2. Prove that if $S \subseteq \mathbb{R}^{n}$ has the Intermediate Value Property then it is connected.

Outline of Solution:

This is from the notes and book.
3. Prove using the definition of open that the set $S=\{(x, y) \mid x>0, y>0\}$ is open in \mathbb{R}^{2}.

Outline of Solution:

For any $\left(x_{0}, y_{0}\right) \in S$ let $r=\min \left(x_{0}, y_{0}\right)$ and show that $B_{r}\left(x_{0}, y_{0}\right) \subseteq S$.
4. Suppose $a, b, c, d \in \mathbb{R}$ with $a<b \leq c<d$. Prove using the definition of pathwise-connected that the subset of \mathbb{R} given by $S=[a, b] \cup[c, d]$ is pathwise-connected iff $b=c$.
Outline of Solution:
If $b=c$ then $[a, b] \cup[c, d]=[a, d]$ is an interval and it's easy to show.
If $b<c$ then show that if S were path connected then every point between b and c would need to be in S, a constradiction.
5. Give a specific example to show that it's possible to have nonzero sequence $\left\{\bar{u}_{k}\right\}$ in \mathbb{R}^{2} and nonzero $\bar{u}, \bar{v} \in \mathbb{R}^{2}$ with $\left\{\bar{u}_{k}\right\}$ converging to \bar{u} with $\bar{u} \perp \bar{v}$ but $\forall k, \bar{u}_{k} \not \perp \bar{v}$. Make sure to prove your claims on perpendicularity and convergence.

Outline of Solution:

For example $\left\{\bar{u}_{k}\right\}=\left\{\left(1+\frac{1}{k}, 1\right)\right\}$ and $\bar{v}=(1,0)$.
6. Show that $\mathbb{Q} \cap[0,1]$ is a connected subset of \mathbb{R}.

Outline of Solution:

This problem had an error in that $\mathbb{Q} \cap[0,1]$ is not a connected subset of \mathbb{R}. It is not connected because for example the open sets $(-\inf , \sqrt{2} / 2)$ and $(\sqrt{2} / 2$, inf $)$ separate it.
7. Give an example of each of the following. No justification is required.
(a) A collection of closed subsets of \mathbb{R}^{2} whose union is not closed in \mathbb{R}^{2}.

Outline of Solution:

For each n let S_{n} be the closed ball of radius $1-\frac{1}{n}$ centered at the origin. Then the union of these is $B_{1}(0,0)$ which is not closed.
(b) A sequence in \mathbb{R}^{2} which does not converge but whose magnitude does converge.

Outline of Solution:
$\left\{\left(\left(1-\frac{1}{k}\right) \cos (k),\left(1-\frac{1}{k}\right) \sin (k)\right)\right\}$
(c) A subset of \mathbb{R} which is neither open nor closed in \mathbb{R}.

Outline of Solution:

$[1,2)$
(d) A function $f: \mathbb{R} \rightarrow \mathbb{R}$ and an open set $A \subseteq \mathbb{R}$ such that $f^{-1}(A)$ is not open.

Outline of Solution:

You'll need to pick a non-continuous f.
8. Let $A \subseteq \mathbb{R}^{n}$. Prove that A is open in \mathbb{R}^{n} iff $A \cap \partial A=\emptyset$.

Outline of Solution:

Suppose A is open. By way of contradiction suppose $A \cap \partial A \neq \emptyset$ and thus $\exists \bar{x} \in A \cap \partial A$. Since $\bar{x} \in \partial A$ every $B_{r}(\bar{x})$ intersects A^{\prime} which contradicts $\bar{x} \in A$ with A open.
Suppose $A \cap \partial A=\emptyset$. By way of contradiction suppose A is not open and so $\exists \bar{x} \in A$ such that no $B_{r}(\bar{x}) \subset A$, meaning every $B_{r}(\bar{x})$ intersects A^{\prime} which means that $\bar{x} \in \partial A$ which contradicts $A \cap \partial A=\emptyset$.

