Math 411 Exam 2 Fall 2013

1. Find the first-order approximation for $f(x, y)=x^{3}+x y$ at $(1,2)$ and use it to approximate [15pts] the value of $f(1.1,2.2)$. Simplify only to eliminate inner product calculations.
2. Give an example of an invertible nonlinear transformation from $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. Prove that it is invertible and prove that it is nonlinear.
3. Let m and n be positive integers with $m+n>2$. Show that the following limit exists:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{n} y^{m}}{x^{2}+y^{2}}
$$

4. Define $f(x, y)=x y+x^{2}$. Let $\bar{x}=(0,0)$ and $\bar{h}=(2,1)$. Find the specific value of θ that satisfies the condition of the Mean Value Theorem.
5. Suppose that $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is continuously differentiable and $\nabla f(0,0) \neq(0,0) 0$. Show that there exists a vector $\bar{p} \neq \overline{0}$ such that $\frac{\partial f}{\partial \bar{p}}(0,0)>0$.
6. Let $a>0$ be unknown and define $f(x, y)=x^{2}+a x y+a y^{2}$. First check that $(0,0)$ is the only critical point for f and then find the conditions on a that would make $(0,0)$ a relative minimum according to the Second Derivative Test.
7. Suppose $\bar{F}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is given by $F(x, y)=(\phi(x, y), \psi(x, y))$ and $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$.
(a) Calculate $\nabla(g \circ \bar{F})(x, y)$ as far as possible using the chain rule.
(b) Assuming $g(u, v)=u^{2} v^{3}$, calculate further.
