1. Find the first-order approximation for \(\bar{F}(x, y) = (x^2 y, xy + y) \) at \((-1, 2)\) and use it to approximate the value of \(\bar{F}(-0.9, 2.1) \).

2. (a) Given a transformation \(T: \mathbb{R}^n \to \mathbb{R}^m \), what is logically incorrect about finding the matrix
\[
[T(\bar{e}_1) \ldots T(\bar{e}_n)]
\]
and then using this matrix to show that the transformation is linear?

(b) Let \(A \) be the set of all linear transformations and \(B \) be the set of all invertible transformations. Give two transformations, one which proves that \(A \subsetneq B \) and one which proves that \(B \subsetneq A \).

3. Let \(f(x, y) = xy + y^2 \) and \(\bar{p} = (-1, 2) \). Find \(\frac{\partial f}{\partial \bar{p}}(1, 1) \) using the limit definition of the directional derivative and also using the inner product calculation.

4. Suppose \(\bar{F}(x, y) = (x^2 y, y - 3x^2) \) and \(\bar{G}(x, y) = (xy + y, y - xy) \). Use the matrix form of the chain rule to evaluate \(D(\bar{F} \circ \bar{G})(x, y) \).

5. Define \(f(x, y) = 2x^2 - 2xy - y^2 \). Find the only critical point \((x_0, y_0)\) and show that the Hessian at \((x_0, y_0)\) is neither positive definite nor negative definite. Moreover show that there is at least one direction \(\bar{h}_1 \) in which \(\langle \nabla^2 f(x_0, y_0) \bar{h}_1, \bar{h}_1 \rangle > 0 \) and another direction \(\bar{h}_2 \) in which \(\langle \nabla^2 f(x_0, y_0) \bar{h}_2, \bar{h}_2 \rangle < 0 \).

6. Define
\[
f(x, y) = \begin{cases}
x \sqrt{x^2 + y^2} & \text{if } y \neq 0 \\
0 & \text{if } y = 0
\end{cases}
\]
Show that \(f \) has directional derivatives in all directions at \((0, 0)\).

7. Suppose \(f: \mathbb{R}^2 \to \mathbb{R} \) is continuously differentiable with \(f(0, 0) = 1 \) and \(f(x, y) = 1 \) for all \(||(x, y)|| = 1 \). Show that there is some point \((x_0, y_0)\) such that \(\frac{\partial f}{\partial x}(x_0, y_0) = \frac{\partial f}{\partial y}(x_0, y_0) \).
Hint: Use the MVT for an appropriate \(\bar{h} \).