## Math 411 Exam 3 Fall 2013 Solutions Outline

1. Define $\bar{F}(x, y)=\left(a x^{2}+y, x^{2}+a y\right)$. Find all $a$ so that the Inverse Function Theorem does not [10 pts] apply at $(1,-1)$.
Solution:
Calculate the derivative matrix and see where the determinant is zero.
2. Give an explicit (not a picture) example of a function $\bar{F}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ and a point $\left(x_{0}, y_{0}\right)$ such that the derivative hypothesis for the Inverse Function Theorem does not apply at $\left(x_{0}, y_{0}\right)$ (show it doesn't) but that $\bar{F}$ is locally invertible at ( $x_{0}, y_{0}$ ) (show it is). If you can't think of such a function you can earn half credit by just doing $f: \mathbb{R} \rightarrow \mathbb{R}$ at some $x_{0}$ instead.

## Solution:

Something like $\bar{F}(x, y)=\left(x^{3}, y^{3}\right)$ at the point $(0,0)$ works.
3. Suppose a shock absorption system has two inputs $x$ and $y$ which control two output values given by $\left(2 x y+x, x+y^{2}\right)$. Normally the system is set at $(x, y)=(3,4)$ yielding output $(27,19)$.
(a) Show that there is a neighborhood of $(27,19)$ such that if the output is forced to change within that neighborhood that $(x, y)$ can change to compensate.

## Solution:

Show that the Inverse Function Theorem applies.
(b) Linearly approximate which $(x, y)$ would yield an output of $(26,19.5)$. You do not need to simplify matrix/vector calculations and you may leave the inverse of a matrix uncalculated.

## Solution:

Use the result of the Inverse Function Theorem to get the derivative matrix of the inverse and use it to construct a linear approximation of the inverse. Then use that.
4. Define $S \subseteq \mathbb{R}^{2}$ by $S=\left\{(x, y) \mid x-y^{2}+6 y=0\right\}$.
(a) Determine the single point where the derivative hypothesis of the Implicit Function Theorem does not show that $S$ is locally a function of $y$.

## Solution:

This was on the Spring 2013 exam, too - check there.
(b) At that point prove that $S$ is not locally a function of $y$. A well-explained picture is sufficient but the explanation is mandatory.

## Solution:

This was on the Spring 2013 exam, too - check there.
5. Give an example (a clearly drawn picture!) of a graph in the plane which is neither a function of $x$ nor a function of $y$ but is locally both a function of $x$ and a function of $y$ at every point.

## Solution:

Not a picture but sketch both $y=1-x$ and $y=2-x$ in the first quadrant. Together these are a graph which satisfies the requirement.
6. Suppose $\bar{F}: \mathbb{R}^{2+2} \rightarrow \mathbb{R}^{2}$ is such that the hypotheses of the Implicit Function Theorem are satisfied at $\left(x_{0}, y_{0}, z_{0}, w_{0}\right)=(2,1,-1,0)$ and moreover suppose

$$
D \bar{F}(2,1,-1,0)=\left[\begin{array}{cccc}
1 & 6 & 5 & -2 \\
0 & 1 & 1 & \beta
\end{array}\right]
$$

(a) Find the value of $\beta$ for which the Implicit Function Theorem does not allow you to write $y, w$ in terms of $x, z$.

## Solution:

Set the determinant of the relevant submatrix (last two columns) equal to zero and solve.
(b) Let $\beta=1$ and observe (no need to prove) that $y, z$ can be rewritten by the Implicit [15 pts] Function Theorem as $(y, z)=\bar{G}(x, w)$. Find a linear approximation to $\bar{G}$ at $(2,0)$. Simplify.

## Solution:

Use the Implicit Function Theorem to find the derivative matrix of the implicit $\bar{G}$ and use this derivative matrix to construct a linear approximation.

