Math 411 Exam 3 Fall 2013 Solutions Outline

1. Define $\bar{F}(x, y) = (ax^2 + y, x^2 + ay)$. Find all a so that the Inverse Function Theorem does not apply at $(1, -1)$.

 Solution:
 Calculate the derivative matrix and see where the determinant is zero.

2. Give an explicit (not a picture) example of a function $\bar{F}: \mathbb{R}^2 \to \mathbb{R}^2$ and a point (x_0, y_0) such that the derivative hypothesis for the Inverse Function Theorem does not apply at (x_0, y_0) (show it doesn’t) but that \bar{F} is locally invertible at (x_0, y_0) (show it is). If you can’t think of such a function you can earn half credit by just doing $f: \mathbb{R} \to \mathbb{R}$ at some x_0 instead.

 Solution:
 Something like $\bar{F}(x, y) = (x^3, y^3)$ at the point $(0, 0)$ works.

3. Suppose a shock absorption system has two inputs x and y which control two output values given by $(2xy + x + xy^2)$. Normally the system is set at $(x, y) = (3, 4)$ yielding output $(27, 19)$.

 (a) Show that there is a neighborhood of $(27, 19)$ such that if the output is forced to change within that neighborhood then (x, y) can change to compensate.

 Solution:
 Show that the Inverse Function Theorem applies.

 (b) Linearly approximate which (x, y) would yield an output of $(26, 19.5)$. You do not need to simplify matrix/vector calculations and you may leave the inverse of a matrix uncalculated.

 Solution:
 Use the result of the Inverse Function Theorem to get the derivative matrix of the inverse and use it to construct a linear approximation of the inverse. Then use that.

4. Define $S \subseteq \mathbb{R}^2$ by $S = \{(x, y) \mid x - y^2 + 6y = 0\}$.

 (a) Determine the single point where the derivative hypothesis of the Implicit Function Theorem does not show that S is locally a function of y.

 Solution:
 This was on the Spring 2013 exam, too - check there.

 (b) At that point prove that S is not locally a function of y. A well-explained picture is sufficient but the explanation is mandatory.

 Solution:
 This was on the Spring 2013 exam, too - check there.

5. Give an example (a clearly drawn picture!) of a graph in the plane which is neither a function of x nor a function of y but is locally both a function of x and a function of y at every point.

 Solution:
 Not a picture but sketch both $y = 1 - x$ and $y = 2 - x$ in the first quadrant. Together these are a graph which satisfies the requirement.

6. Suppose $\bar{F}: \mathbb{R}^{2+2} \to \mathbb{R}^2$ is such that the hypotheses of the Implicit Function Theorem are satisfied at $(x_0, y_0, z_0, w_0) = (2, 1, -1, 0)$ and moreover suppose

 $D\bar{F}(2, 1, -1, 0) = \begin{bmatrix} 1 & 6 & 5 & -2 \\ 0 & 1 & 1 & \beta \end{bmatrix}$

 (a) Find the value of β for which the Implicit Function Theorem does not allow you to write y, w in terms of x, z.

 Solution:
 Set the determinant of the relevant submatrix (last two columns) equal to zero and solve.
(b) Let $\beta = 1$ and observe (no need to prove) that y, z can be rewritten by the Implicit Function Theorem as $(y, z) = \bar{G}(x, w)$. Find a linear approximation to \bar{G} at $(2, 0)$.
Simplify.

Solution:
Use the Implicit Function Theorem to find the derivative matrix of the implicit \bar{G} and use this derivative matrix to construct a linear approximation.