1. Prove that the subset of \mathbb{R} defined by $\{0\} \cup\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}$ has Jordan content zero.

Solution Outline:

For a given $\epsilon>0$ use the generalized rectangle $[0, \epsilon / 4]$ as well as generalized rectangles each of size $[\epsilon /(4 N)]$ covering each of the finite N remaining uncovered points.
2. Define $R=[0,1] \times[0,1]$ and $f: R \rightarrow \mathbb{R}$ as follows.

If $x \in \mathbb{Q}$ then put $f(x, y)=\left\{\begin{array}{ll}1 & \text { if } 0 \leq y \leq \frac{1}{2} \\ 0 & \text { if } \frac{1}{2}<y \leq 1\end{array}\right.$ and if $x \notin \mathbb{Q}$ then put $f(x, y)=\left\{\begin{array}{ll}0 & \text { if } 0 \leq y \leq \frac{1}{2} \\ 1 & \text { if } \frac{1}{2}<y \leq 1\end{array}\right.$.
Find $\int_{0}^{1} \int_{0}^{1} f(x, y) d y d x$.

Solution Outline:

In this case we can just do the iterated integral. Keep in mind that you'll need to consider the inner integral separately for different x.
3. Define $S \subseteq \mathbb{R}^{2}$ by $S=\left\{(x, y) \mid x-y^{2}+6 y=0\right\}$.
(a) Find all points $\left(x_{0}, y_{0}\right)$ where Dini's Theorem shows that S is locally a function of x and find the slope of that local function at x_{0}.

Solution Outline:

Defining $f(x, y)=x-y^{2}+6 y$, here we look at where $\frac{\partial f}{\partial y}(x, y)=0$. This is where $-2 y+6=0$ or $y=3$, This yields the point $(-9,3)$.
(b) Show that at every point not satisfying the hypotheses of Dini's Theorem S is not locally a function of x.

Solution Outline:

Observe that for every $\epsilon>0$ there are two solutions to $f(-9+\epsilon, 3)=0$ and hence there is no neighborhood of $(-9,3)$ on which S is locally a function of x.
4. Suppose the temperature and humidity (t, h) of a storage container is set by two controls (x, y) such that $t=x^{2} y+5 y$ and $h=x y+y^{3}$. You set the controls at $(x, y)=(2,3)$ to achieve the desired $(t, h)=(27,33)$. Show that for any (t, h) sufficiently close to $(27,33)$ you can alter (x, y) slightly in order to achieve this new (t, h). Moreover, approximately (linearly) which (x, y) would you set in order to achieve $(t, h)=(28,34)$?

Solution Outline:

First apply the Inverse Function Theorem to show that the function $\bar{F}(x, y)=\left(x^{2} y+5 y, x y+y^{3}\right)$ is locally invertible at $(x, y)=(2,3)$. The Inverse Function Theorem then yields the derivative of the inverse which we then use to construct a linear approximation of the inverse and then plug $(28,34)$ into this approximation.
5. Define $D=([0,1] \cap \mathbb{Q}) \times([0,1] \cap \mathbb{Q}) \times([0,1] \cap \mathbb{Q})$. Show that the volume of D is undefined.

Solution Outline:

If we define $f:[0,1] \times[0,1] \times[0,1] \rightarrow \mathbb{R}$ by $f(x, y, z)=1$ for $(x, y, z) \in D$ and 0 otherwise. Then due to the density of D and of the complement, the upper sums are always 1 but the lower sums are always 0 so the integral and hence the volume are undefined.
6. Define the change of variables Ψ by $\Psi(u, v)=\left(\frac{u}{v+1}, \frac{u v}{v+1}\right)$ for $u, v>0$.

Define $D=\left\{(x, y) \mid 1 \leq x+y \leq 4\right.$ and $\left.\frac{1}{2} \leq \frac{y}{x} \leq 3\right\}$. Use Ψ to rewrite $\int_{D}\left(y+\frac{y^{2}}{x}\right)$ as an iterated integral in u and v. Justify.

Solution Outline:

Show that Ψ is a valid change of variables and apply.
7. Define $D=[0,1] \times[0,1]$ and $f: D \rightarrow \mathbb{R}$ by $f(x, y)=x$. Using lower and upper sums show that f is integrable over D and find the integral.

Solution Outline:

Show that the regular partitions form an Archimedean sequence of partitions and then use either the lower or upper sum to determine the integral.

