Fall 2013 Math 411 Final

Justin Wyss-Gallifent

- 1. Using the definition of convergence in \mathbb{R}^n prove that the sequence $\left\{\left(2+\frac{1}{n},1-\frac{2}{n}\right)\right\}$ converges to the point (2,1).
- 2. Using the definition of an open set prove that the set $\{(x, y) \mid y > 0\}$ is open.
- 3. (a) Give an example of a collection of closed intervals whose union is not closed. You do not need to prove anything, just give the intervals.
 - (b) Give an example of a collection of bounded intervals whose union is not bounded. You do not need to prove anything, just give the intervals.
- 4. Using the definition of the directional derivative find the directional derivative of the function f(x, y) = xy 3x at (1, 1) in the direction of (-2, 3).
- 5. Let $f(x, y) = xy^3$. Find the second-order approximation for f at (1, 2) and use it to approximate f(1.01, 1.97). Simplify matrix calculations only.
- 6. Find the value of θ guaranteed by the Mean Value Theorem for $f(x, y) = 3xy + y^3$ at the point $\bar{x} = (1, -2)$ with $\bar{h} = (2, 3)$.
- 7. Find all values of a so that the function $F(x, y) = (x ay^2, ax^2 y)$ satisfies the hypotheses of the Inverse Function Theorem at (1, 1). For an unknown a satisfying these hypotheses, find $D(F^{-1})(f(1, 1))$.
- 8. Define $F : \mathbb{R}^{1+2} \to \mathbb{R}^2$ by $F(x, y, z) = (x yz, x^2y + z)$.
 - (a) Find DF(1, -1, -1).
 - (b) Prove that the hypotheses for the Implicit Function theorem do not apply at (1, -1, -1) for writing (y, z) = H(x) near (1, -1, -1).
 - (c) Prove that the hypotheses for the Implicit Function Theorem hold at (1, -1, -1) for writing (x, z) = G(y) for (x, y, z) near (1, -1, -1). Write down a first-order approximation for G at (1, -1, -1).
- 9. Define $I = [0,1] \times [0,1]$ and define $f: I \to \mathbb{R}$ by

$$f(x,y) = \begin{cases} 1 & \text{if } y \le x \\ 0 & \text{if } y > x \end{cases}$$

Use the Archimedes Riemann Theorem with an appropriate Archimedian sequence of partitions to evaluate $\int_I f$.

- 10. Prove rigorously that the boundary of the rectangle $[0,1] \times [2,4]$ has Jordan content zero.
- 11. Let Σ be the surface parametrized by $\bar{r}(u, v) = (u 2uv, 4u^2)$ for $0 \le u \le 3, -1 \le v \le 2$.
 - (a) Explain informally why $\int_{\Sigma} f = 0$.
 - (b) Evaluate $\int_{\Sigma} f \, dS$ until you have an iterated integral then stop.
- 12. Apply the change of variables formula to the integral $\int_D x + y \ d(x, y)$ where D is the region in the plane bounded by the parabolas $y = x^2$, $y = x^2 + 1$, $y = 1 - x^2$ and $y = 2 - x^2$. Use Ψ which has $\Psi^{-1}(x, y) = (y - x^2, y + x^2)$. Be rigorous and clear about your Ψ , $D\Psi$, $\Psi^{-1}(D)$ (draw a picture) and especially $f(\Psi(x))$. Simplify but do not evaluate.