1. Let $\bar{x}_{0} \in \mathbb{R}^{n}$ and $r \in \mathbb{R}^{+}$. Prove from the definition of closed that $S=\left\{\bar{x} \in \mathbb{R}^{n} \mid\left\|\bar{x}-\bar{x}_{0}\right\|<r\right\}$ is not closed.
2. Let $A, B \subseteq \mathbb{R}$ be sequentially compact. Prove that $\{(x, y) \mid x \in A, y \in B\} \subseteq \mathbb{R}^{2}$ is sequentially compact.
3. Let $\mathcal{O} \subseteq \mathbb{R}^{n}$ be open and $\bar{x} \in \mathcal{O}$. Suppose $f: \mathcal{O} \rightarrow \mathbb{R}$ is continuously differentiable and $\nabla f(\bar{x}) \neq \overline{0}$. Prove that the direction of norm 1 at $\bar{x}$ in which $f$ increases the fastest is the direction $\nabla f(\bar{x}) /\|\nabla f(\bar{x})\|$.
4. Let $\mathcal{O}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x y z>-1\right\}$ and define $g: \mathcal{O} \rightarrow \mathbb{R}$ by $g(x, y, z)=\sqrt{1+x y z}$.
(a) Define $\phi: \mathbb{R} \rightarrow \mathbb{R}$ by $\phi(t)=g(3 t, 1-t, t)$. Calculate $\phi^{\prime \prime}(0)$ directly.
(b) Find the Hessian for $g$ at $(0,1,0)$ and use this to calculate $\phi^{\prime \prime}(0)$.
5. Let $a, b \in \mathbb{R}$ be fixed nonzero constants with $a^{2}+b^{2}=1$. Define $P: \mathbb{R}^{2} \rightarrow \mathbb{R}$ to be the projection function to the line $a x+b y=0$. Explicitly calculate $P(x, y)$ for any $(x, y)$. Prove that $P$ is linear and determine the matrix of the transformation.
6. Define $f(x, y)=\left(2 x y+y-x+\sin (x+y), x^{2}+y-e^{x}\right)$.
(a) Show that the Inverse Function Theorem applies at $(0,0)$.
(b) Find $D f^{-1}(0,-1)$.
(c) Can we find solutions to $f(x, y)=(0,-1)$ arbitrarily close to $(0,0)$ ? Justify.
7. Suppose your thermostat has two dials to set, one labeled $x$ and the other labeled $y$. The resulting temperature is $T(x, y)=x^{2} y+x^{3} y^{3}$. Suppose you set $x=3$ and $y=2$. Use Dini's Theorem to prove that if $x$ changes slightly that you can alter $y$ to maintain the same temperature. Make sure you explain how Dini's Theorem is applying to the problem.
8. Suppose $S$ is a bounded countably infinite set of points in $\mathbb{R}^{n}$. Prove that an infinite subset may be chosen with Jordan content zero.
9. Define $I=[0,1] \times[0,1]$ and $f: I \rightarrow \mathbb{R}$ by

$$
f(x, y)= \begin{cases}0 & \text { for } y \in \mathbb{Q} \\ 2 x-1 & \text { for } y \notin \mathbb{Q}\end{cases}
$$

Of the following three, which exist and which do not? Justify informally but clearly.
(a) $\int_{I} f$
(b) $\int_{0}^{1} \int_{0}^{1} f(x, y) d x d y$
(c) $\int_{0}^{1} \int_{0}^{1} f(x, y) d y d x$
10. Prove Green's Theorem for a generalized rectangle. That is, prove that if $I$ is a generalized rectangle with boundary $C$ and $M, N: I \rightarrow \mathbb{R}$ are continuously differentiable then we have $\int_{C} M d x+N d y=\int_{I} N_{x}-M_{y}$.
11. Let $C$ consist of the two straight line segments from $(0,1)$ to $(0,0)$ to $(1,0)$. Prove from the definition that $C$ is rectifiable with length 2 .

