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1 Definitions

Quaternions are essentially an extension of the complex numbers. Rather than
introducing just one value whose square is −1 we introduce three.

Definition 1.0.1. We define ı̂, ̂ and k̂ such that

ı̂2 = ̂2 = k̂2 = −1

Moreover we insist that these are different from one another and we relate them
as follows:

1. ı̂̂ = +k̂

2. ̂k̂ = +ı̂

3. k̂ı̂ = +̂

�

Theorem 1.0.1. From these rules we get some other facts:

(a) ̂ı̂ = −k̂

(b) k̂̂ = −ı̂

(c) ı̂k̂ = −̂

(d) ı̂̂k̂ = ̂k̂ı̂ = k̂ı̂̂ = −1

(e) k̂̂ı̂ = ̂ı̂k̂ = ı̂k̂̂ = +1

Proof. For example:

ı̂̂ = k̂

ı̂̂k̂ = k̂k̂

ı̂̂k̂ = −1

̂ı̂ı̂̂k̂ = −̂ı̂

̂(−1)̂k̂ = −̂ı̂

−(̂̂)k̂ = −̂ı̂

−(−1)k̂ = −̂ı̂

k̂ = −̂ı̂

−k̂ = ̂ı̂
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At this point notice that for example ı̂̂ = −̂ı̂ so multiplication as defined
is not commutative when it includes ı̂, ̂ and k̂. As we’ll see soon it’s not
anti-commutative either when we go full-on with quaternions.

Exercise 1.1. Using a variation on the above proof show that k̂̂ = −ı̂.

�

We can then define a quaternion.

Definition 1.0.2. A quaternion is an expression of the form:

q = s+ aı̂ + b̂ + ck̂ with s, a, b, c ∈ R

We extend addition, subtraction and multiplication to the quaternions by obey-
ing the above rules as well as distributivity and associativity.

The set of quaternions is denoted H. This is for William Rowan Hamilton who
first described them in 1843.

�

Example 1.1. If q1 = 2 + ı̂ and q2 = 3 + 4̂ then:

q1q2 = (2 + ı̂)(3 + 4̂)

= 2(3 + 4̂) + ı̂(3 + 4̂)

= 6 + 8̂ + 3ı̂ + 4ı̂̂

= 6 + 8̂ + 3ı̂ + 4k̂

= 6 + 3ı̂ + 8̂ + 4k̂

Just to compare, note that:

q2q1 = (3 + 4̂)(2 + ı̂)

= 3(2 + ı̂) + 4̂(2 + ı̂)

= 6 + 3ı̂ + 8̂ + 4̂ı̂

= 6 + 3ı̂ + 8̂− 4k̂

= 6 + 3ı̂ + 8̂− 4k̂

These are different!

�

3



Example 1.2. If q1 = 2 + 3ı̂− 2̂ + 1k̂ and q2 = 1− 1ı̂ + 4̂ + 5k̂ then:

q1q2 = (2 + 3ı̂− 2̂ + 1k̂)(1− 1ı̂ + 4̂ + 5k̂)

= 2(1− 1ı̂ + 4̂ + 5k̂)

+ 3ı̂(1− 1ı̂ + 4̂ + 5k̂)

− 2̂(1− 1ı̂ + 4̂ + 5k̂)

+ 1k̂(1− 1ı̂ + 4̂ + 5k̂)

= 2− 2ı̂ + 8̂ + 10k̂

+ 3ı̂− 3ı̂2 + 12ı̂̂ + 15ı̂k̂

− 2̂ + 2̂ı̂− 8̂2 − 10̂k̂

+ 1k̂ − 1k̂ı̂ + 4k̂̂ + 5k̂2

= 2− 2ı̂ + 8̂ + 10k̂

+ 3ı̂− 3(−1) + 12(k̂) + 15(−̂)

− 2̂ + 2(−k̂)− 8(−1)− 10(ı̂)

+ 1k̂ − 1(̂) + 4(−ı̂) + 5(−1)

= 8− 13ı̂− 10̂ + 21k̂

�

It’s worth doing one or two of these just to settle the rules in your head.

Exercise 1.2. If q1 = 2 + 3ı̂ + 5k̂ and q2 = 1− 2̂ + 3k̂ find q1q2 and q2q1.

�

Definition 1.0.3. For a quaternion q = s+ aı̂ + b̂ + ck̂ we have:

(a) The real, or scalar, part of q, denoted Re(q) = s.

(b) The imaginary, or vector, part of q, denoted Im(q) = aı̂ + b̂ + ck̂.

�

Definition 1.0.4. A pure quaternion (also a vector quaternion) is a quaternion
with scalar part equal to 0.

�

Definition 1.0.5. A scalar (also a scalar quaternion or a real quaternion)) is
a quaternion with vector part equal to 0.

�

Example 1.3. 2+3ı̂−1̂+2k̂ is a quaternion, 3ı̂−1̂+2k̂ is a pure quaternion
and 7 is a scalar.

�
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2 Quaternion Properties

2.1 Non-Commutativity

Theorem 2.1.1. Observe that (see examples above) in general q1q2 6= q2q1
and q1q2 6= −q2q1 so quaternion multiplication is neither commutative nor anti-
commutative. This is not really a theorem, I just called it one so it would have
an impact. There are some special cases as we will notice later.

�

2.2 Vector Connection

The use of the notation ı̂, ̂ and k̂ are not arbitrary, we can use vector operations
like cross products and dot products on the vector part.

Example 2.1. If q1 = 2ı̂ + 3̂ − 1k̂ and q2 = 5ı̂ + 4̂ + 6k̂ then q1 · q2 = 16
and q1 × q2 = 22ı̂ − 17̂ − 7k̂. Notice these are both quaternions, the first is
just a scalar and the second is pure.

�

For this reason often quaternions are broken into the scalar term and the vector
term and so a quaternion can be written:

q = s+ v or q = [s,v] where s ∈ R and v = aı̂ + b̂ + ck̂.

In fact the cross and dot products simplify quaternion multiplication quite a bit
as demonstrated by the following:

Theorem 2.2.1. For quaternions q1 = s1 + v1 and q2 = s2 + v2 we have:

q1q2 = (s1s2 − v1 · v2) + (s1v2 + s2v1 + v1 × v2)

q2q1 = (s1s2 − v2 · v1) + (s2v1 + s1v2 + v2 × v1)

= (s1s2 − v1 · v2) + (s1v2 + s2v1 − v1 × v2)

Note: The parentheses are there to distinguish the scalar and vector parts.

Proof. The first is just brute force calculation. The second follows from the first
and from the commutativity of the dot product and the anti-commutativity of
the cross product. The second line isn’t really necessary, it’s just there to make
it obvious how the (anti-)commutativity fails. It’s the cross product part which
complicates the situation.

Note 2.2.1. Note that for q1, q2 ∈ H we have:

Re(q1q2) = Re(q2q1)

Im(q1q2) 6= Im(q2q1) (In General)
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�

Exercise 2.1. Given q1 = 2 + 1ı̂− 2̂ + 3k̂ and q2 = 5− 5ı̂ + 2̂ + 4k̂, use the
above theorem to calculate q1q2 and q2q1.

�

Exercise 2.2. Do the brute brute force calculation for the above theorem.

�

Exercise 2.3. Prove that for q1 = s1 + v1 and q2 = s2 + v2 ∈ H we have
q1q2 = q2q1 iff v1 ‖ v2.

�

As a special case of this we have:

Theorem 2.2.2. For pure quaternions v and w we have:

vw = −v ·w + v ×w

wv = −w · v + w × v

= −v ·w − v ×w

Proof. The first of these follows immediately from the previous theorem when
s1 = s2 = 0.

The second follows from the commutativity of the dot product and the anti-
commutativity of the cross product.

Note 2.2.2. Note that for pure quaternions v,w we have:

Re(wv) = Re(vw)

Im(wv) = −Im(vw)

�

In addition it follows from this theorem that we can calculate the dot product
and cross product from the quaternion product, as the following shows:

Theorem 2.2.3. For vectors v and w we have:

v ×w = +
1

2
(vw −wv)

v ·w = −1

2
(vw + wv)

Proof. These follow by adding or subtracting the two equations in the previous
theorem and then dividing by 1

2 .
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Note 2.2.3. We are not suggesting that dot and cross products should be
computed this way but it is good to keep in mind that they can be. More-
over it’s important to note that the quaternion product can be considered the
fundamental thing here from which the dot and cross products emerge.

�

2.3 Conjugation

Definition 2.3.1. The conjugate of a quaternion q = s+aı̂+b̂+ck̂ is denoted
q∗ and is defined by:

q∗ = s− aı̂− b̂− ck̂

We don’t write q̄ since q already involves a vector and this could cause confusion.
A better way to write this might be:

(s+ v)∗ = s− v

�

Theorem 2.3.1. If q1, q2 ∈ H then (q1q2)∗ = q∗2q
∗
1

Proof. Brute force.

Exercise 2.4. Work out the brute force.

�

Exercise 2.5. Prove that for pure quaternions v and w we have wv = (vw)∗.

�

Theorem 2.3.2. The conjugate of a quaternion can be expressed using addition
and multiplication of quaternions. Specifically:

q∗ = −1

2
(q + ı̂qı̂ + ̂q̂ + k̂qk̂)

Proof. Brute force. Note that the same is not true in C. In other words there
is no way to express the conjugate of a complex number using addition and
multiplication of complex numbers. This is not obvious.

2.4 Norm

Definition 2.4.1. The magnitude (or norm) of a quaternion q = s+aı̂+b̂+ck̂
is:

|q| =
√
s2 + a2 + b2 + c2

Note that if q = s+ v then |q|2 = s2 + |v|2.
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Just like in C now we get:

Theorem 2.4.1. If q = s+ aı̂ + b̂ + ck̂ ∈ H then

qq∗ = q∗q = s2 + a2 + b2 + c2 = |q|2

Proof. Brute force.

Exercise 2.6. Work out the brute force.

�

Theorem 2.4.2. It follows that |q|2 = qq∗ = q∗q, that |q| =
√
qq∗ =

√
q∗q.

Proof. Immediate from previous theorems.

Exercise 2.7. Elaborate the above proof.

�

Theorem 2.4.3. The norm is multiplicative. That is, for q1, q2 ∈ H we have:

|q1q2| = |q1||q2|

Proof. We have:

|q1q2| =
√

(q1q2)(q1q2)∗

=
√
q1q2q∗2q

∗
1

=
√
q1|q2|2q∗1

= |q2|
√
q1q∗1

= |q2||q1|
= |q1||q2|

Notice that the same is true in C.

2.5 Unit Quaternions

Definition 2.5.1. A unit quaternion is a quaternion with norm 1.

�

Note 2.5.1. Note that for a unit quaternion we have qq∗ = q∗q = 1.

�

Unit quaternions are interesting in the sense that they are all square roots of
−1 and all square roots of −1 are unit quaternions. So by constructing H by
introducing three new square roots of −1 we actually have gained infinitely
many.
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Theorem 2.5.1. q is a unit pure quaternion iff q2 = −1.

Proof. For a general quaternion q = s+ v = s+ aı̂ + b̂ + ck̂ we have:

q2 = (ss− v · v) + (sv + sv + v × v)

= (s2 − |v|2) + (2sv + 0)

= (s2 − a2 − b2 − c2) + (2ası̂ + 2bs̂ + 2csk̂)

If q is a unit pure quaternion then s = 0 and a2 + b2 + c2 = 1 and the result
follows immediately.

On the other hand suppose q2 = −1. Then we have all of:

s2 − a2 − b2 − c2 = −1

2as = 0

2bs = 0

2cs = 0

We cannot have s 6= 0 since that would imply a = b = c = 0 from the last three
which contradicts the first. Thus we must have s = 0 in which case the first
yields a2 + b2 + c2 = 1 and therefore |q| = 1.

Example 2.2. If q = 2√
14
ı̂− 1√

14
̂ + 3√

14
k̂ then:

|q| =

√(
2√
14

)2

+

(
1√
14

)2

+

(
3√
14

)2

= 1

Thus q is a unit pure quaternion and hence q2 = −1.

�

Consider what this states. If we think of unit pure quaternions as unit vectors
(which they are) then they form the sphere of radius 1 centered at the origin.
So in H there are a sphere’s worth of square roots of −1.

It turns out that this is where we start to see more similarities to C. In C unit
complex numbers correspond to rotations in 2D and there are a circle’s worth
of rotations (one per angle).

In H a rotation has an axis (of rotation) and each axis can be represented by a
vector so it turns out that each unit pure quaternion corresponds to an axis of
rotation. We’ll need to go a little further in order to bring the angle of rotation
into the picture, but that will happen in the next section.
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2.6 Invertibility

Definition 2.6.1. A quaternion q is invertible if there is another quaternion,
denoted q−1, such that qq−1 = q−1q = 1.

�

Note 2.6.1. Note that for a unit quaternion we have q−1 = q∗.

�

Theorem 2.6.1. All nonzero quaternions are invertible and in fact:

q−1 =
q∗

|q|2
=
s− aı̂− b̂− ck̂

|q|2

Proof. Observe that:

q

(
q∗

|q|2

)
=
qq∗

|q|2
=
|q|2

|q|2
= 1

and similarly for the other product.

Exercise 2.8. Calculate the inverse of 2 + 4ı̂− 2̂ + 3k̂.

�

Corollary 2.6.1. If q = s+ aı̂ + b̂ + ck̂ is a unit quaternion then

q−1 = s− aı̂− b̂− ck̂ = q∗

�

Theorem 2.6.2. For nonzero quaternions q1 and q2 we have:

(q1q2)−1 = q−12 q−11

Proof. This follows from the fact that:

q1q2q
−1
2 q−11 = 1 and q−12 q−11 q1q2 = 1

2.7 Divisibility

We won’t use divisibilty so we won’t cover it here except to say that we need to
be very careful because of the non-commutative nature of quaternion multipli-
cation.

In other words when we write an expression like this:
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q1
q2

we need to understand that we mean:

q1
q2

= q1q
−1
2

This is important because we cannot arbitrarily cancel. For example observe
that:

q1q2
q1

= q1q2q
−1
1

which is not necessarily the same as q2. In other words the q1 don’t cancel.

2.8 Conjugation of a Pure Quaternion is Pure

Lastly a fact that will be relevant when we discuss rotation using quaternions:

Theorem 2.8.1. If v is pure and q ∈ H then qvq−1 is pure.

Proof. From an earlier theorem we see that for q1, q2 ∈ H we have Re(q1q2) =
Re(q2q1). In this case:

Re(qvq−1) = Re(qq−1v) = Re(v) = 0

2.9 Summary

Here is a brief summary of properties for reference:

(a) q1q2 = (s1s2 − v1 · v2) + (s1v2 + s2v1 + v1 × v2)

(b) vw = −v ·w + v ×w

(c) wv = −v ·w + w × v = −v ·w − v ×w

(d) v ×w = + 1
2 (vw −wv)

(e) v ·w = − 1
2 (vw + wv)

(f) qq∗ = |q|2

(g) |q| =
√
qq∗

(h) (q1q2)∗ = q∗2q
∗
1

(i) q is a unit pure quaternion iff q2 = −1

(j) |q1q2| = |q1||q2|
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(k) q∗ = − 1
2 (q + ı̂qı̂ + ̂q̂ + k̂qk̂)

(l) q−1 = q∗

|q|2

(m) If q is a unit quaternion then q−1 = q∗

3 Visualization of Quaternions

The only quaternions we represent graphically are pure quaternions, meaning
those of the form aı̂+ b̂+ ck̂. We represent these either as vectors or as points,
depending on how we’re using them.

It’s worth taking a moment to appreciate that when dealing with vectors v and
w that the quaternion product:

vw = v ×w − v ·w

captures both the dot product (in the scalar part of the result) and the cross
product (in the vector part of the result).

Imagine two vectors v and w. When v ⊥ w the dot product is zero and the
result is just v × w and is perpendicular to both. If we turn v and w a bit
(without changing their lengths) so v 6⊥ w, the resulting cross product shrinks
(since |v × w| = |v||w| sin θ) and we interpret that what we’ve lost from the
cross product we’ve gained in the dot product, but as a scalar. As v and w
get less perpendicular and more parallel the cross product shrinks towards zero
and we gain more dot product until they’re parallel, at which point the cross
product part vanishes and the dot product part is everything.

4 Translations

If a point xı̂+y̂+zk̂ is to be translated in 3D space we simply add or subtract
another pure quaternion.

Example 4.1. To shift 2ı̂+3̂−1k̂ by 5 in the x-direction, 2 in the y-direction,
and 7 in the z-direction we simply do:

2ı̂ + 3̂− 1k̂ 7→ 2ı̂ + 3̂− 1k̂ + 5ı̂ + 2̂ + 7k̂ = 7ı̂ + 5̂ + 6k̂

�
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5 Rotations

5.1 About Lines through the Origin

It turns out that extending complex numbers to quaternions allows rotations
to extend to three dimensions in a very convenient way. It permits us to easily
construct a formula for rotation about an arbitrary axis.

First a well-known formula. While this formula does the job it is complicated
from an algebraic point of view, meaning it’s fine for doing a simple calculation
but it’s not the type of calculation we want to carry about.

Theorem 5.1.1. (Rodrigues Rotation Formula)
Suppose û is a unit vector and v is some vector. Then the result of rotating
v around û by an angle θ counterclockwise with regards to the right-hand rule
equals:

Rot(v) = (1− cos θ)(û · v)û + (cos θ)v + (sin θ)(û× v)

Proof. We begin by breaking v into components, one perpendicular to û and
one parallel to û:

v = v⊥ + v‖

In order to rotate v we leave v‖ alone, rotate v⊥ and then add v‖ + Rot(v⊥).

That is:

Rot(v) = v‖ + Rot (v⊥)

The reason for this is illustrated by this picture:

θ

v

v⊥

v‖

Rot(v⊥)

Rot(v)

The calculation for Rot(v⊥) is a specific example of the 2D case from Chapter
2 which used with v⊥ tells us that:
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Rot(v⊥) = (cos θ)v⊥ + (sin θ)(û× v⊥)

If we use this along with the facts that:

v‖ = (û · v)û

v⊥ = v − (û · v)û

So now we calculate:

Rot(v) = v‖ + Rot (v⊥)

= v‖ + (cos θ)v⊥ + (sin θ)(û× v⊥)

= (û · v)û + (cos θ) (v − (û · v)û) + (sin θ) (û× (v − (û · v)û))

= (û · v)û + (cos θ)v − (cos θ)(û · v)û + (sin θ)(û× v − û× ((û · v)û)︸ ︷︷ ︸
û×û=0

)

= (1− cos θ)(û · v)û + (cos θ)v + (sin θ)(û× v)

It’s worth taking a minute to verify that all this makes sense. Each term is
independently a scalar times a vector so the end result is a linear combination
of û, v and û× v.

Exercise 5.1. Use RRF to calculate the result of rotating v = 2ı̂ + 3̂ − 1k̂
about u = 3ı̂ + 4̂− 5k̂ by 7π/6 radians. Note that u has not been normalized
so do this first.

�

Before our theorem, a few notes:

(a) Note the trig identity cos(2x) = cos2 x− sin2 x.

(b) Note the trig identity sin(2x) = 2 sinx cosx.

(c) Note the trig identity 2 sin2 x = 1− cos(2x).

(d) We have ûv−vû = 2(û×v). This follows directly from û×v = 1
2 (ûv−vû).
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(e) We have ûvû = −2(û · v)û + v. This is not so obvious. We know that
û · v = − 1

2 (ûv + vû) and so ûv = −2û · v − vû. Then:

ûvû = [−2û · v − vû] û

= −2(û · v)û− vûû

= −2(û · v)û− v(û× û− û · û)

= −2(û · v)û− v(−1)

And now our theorem:

Theorem 5.1.2. Suppose û is a unit vector and v is some vector. Then the
result of rotating v around û by an angle θ counterclockwise with regards to
the right-hand rule can be obtained by letting:

p = cos

(
θ

2

)
+ sin

(
θ

2

)
û

and then doing:
vRot = pvp−1 = pvp∗

Before embarking on the proof, note that p is a unit quaternion because |p|2 =
cos2(θ/2) + | sin(θ/2)û|2 = 1 + 1 = 1. In addition every unit unit quaternion p
can be decomposed this way because for any unit quaternion p = s+ w we can
write:

p = s+ |w|
(

1

|w|
w

)
and then simply assign û = 1

|w|w and choose θ so that cos(θ/2) = s and

sin(θ/2) = |w| which is possible since s2 + |w|2 = |p|2 = 1.

Thus unit quaternions correspond to rotations where the vector part corre-
sponds to the axis of rotation and the angle is built into the scalar part and the
magnitude of the vector part. This is very important because when discussing
rotations we can say that an arbitrary rotation can be performed via v 7→ pvp∗

where p is a unit quaternion. This will arise frequently.

Proof. This is just calculation. First note that since |p| = 1 that p−1 = p∗.
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Then consider:

pvp∗ =

(
cos

(
θ

2

)
+ sin

(
θ

2

)
û

)
v

(
cos

(
θ

2

)
− sin

(
θ

2

)
û

)
= cos2

(
θ

2

)
v + sin

(
θ

2

)
cos

(
θ

2

)
(ûv − vû)︸ ︷︷ ︸

(d)

− sin2

(
θ

2

)
ûvû︸︷︷︸
(e)

= cos2
(
θ

2

)
v + sin

(
θ

2

)
cos

(
θ

2

)
2 (û× v)− sin2

(
θ

2

)
(−2(û · v)û + v)

=

(
cos2

(
θ

2

)
− sin2

(
θ

2

))
︸ ︷︷ ︸

(a)

v + 2 sin

(
θ

2

)
cos

(
θ

2

)
︸ ︷︷ ︸

(b)

(û× v) + 2 sin2

(
θ

2

)
︸ ︷︷ ︸

(c)

(û · v) û

= (cos θ) v + (sin θ) (û× v) + (1− cos θ) (û · v) û

= vRot

This should and should not surprise you. In C it was multiplication by cos θ +
ı̂ sin θ which did rotation and so this p should remind you a little of that.

In this case it’s not a simple multiplication but rather a pair of multiplications.
There’s some elegant beauty in the fact that each of those multiplication involves
half the required overall angle.

It is also worth noting that although p is not a pure quaternion the result of the
calculation pvp∗ where v is a pure quaternion results in a pure quaternion.

Example 5.1. To rotate v = 2ı̂+ 1̂ by θ = π/3 radians about û = 1√
2
̂+ 1√

2
k̂

we set:

p = cos(π/6) + sin(π/6)

(
1√
2
̂ +

1√
2
k̂

)
=

√
3

2
+

1

2
√

2
̂ +

1

2
√

2
k̂

and then the result is:

pvp∗ =

(√
3

2
+

1

2
√

2
̂ +

1

2
√

2
k̂

)
(2ı̂ + 1̂)

(√
3

2
− 1

2
√

2
̂− 1

2
√

2
k̂

)
≈ ...Matlab...

≈ 0 + 0.3876ı̂ + 1.9747̂− 0.9747k̂

�

Exercise 5.2. Use the above formula to rotate v = ı̂ about û = k̂ by π/2
radians. Does this correspond to your expectations? Hint: What should it do?
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�

Exercise 5.3. Use the above formula to rotate v = 1ı̂ + 1̂ + 2k̂ about u =
2ı̂ + 0̂ + 3k̂ by 2π/3 radians.

�

After discussions with a student here is a slightly shorter proof of the above
theorem. For now I’ll keep the previous one as the default one because I think
there’s value in seeing Rodrigues Rotation Formula.

Here is the theorem again:

Theorem 5.1.3. Suppose û is a unit vector and v is some vector. Then the
result of rotating v around û by an angle θ counterclockwise with regards to
the right-hand rule can be obtained by letting:

p = cos

(
θ

2

)
+ sin

(
θ

2

)
û

and then doing:
vRot = pvp−1 = pvp∗

Proof. As with the start of RRF we break v into components parallel and per-
pendicular to u, so v = v‖ + v⊥ and we wish to rotate the perpendicular part
while keeping the parallel part fixed. See the RRF picture for clarification if
needed.

Observe that the mapping is then:

v 7→ p(v‖ + v⊥)p−1 = pv‖p
−1 + pv⊥p

−1

Observe then the following two things:

(a) For parallel pure quaternions a and b we have:

ab = a× b− a · b = 0− a · b = b× a− b · a = ba

It follows that v‖û = ûv‖ and so:

17



pv‖p
−1 = pv‖p

∗

= pv‖ (cos(θ/2)− û sin(θ/2))

= p
(
cos(θ/2)v‖ − sin(θ/2)v‖û

)
= p

(
cos(θ/2)v‖ − sin(θ/2)ûv‖

)
= p (cos(θ/2)− sin(θ/2)û) v‖

= pp∗v‖

= pp−1v‖

= v‖

(b) For perpendicular pure quaternions a and b we have:

ab = a× b− a · b = a× b− 0 = −(b× a) + 0 = −(b× a) + b · a = −ba

It follows that v⊥û = −(û× v⊥) = −ûv⊥. and so:

pv⊥p
−1 = pv⊥p

∗

= pv⊥ (cos(θ/2)− û sin(θ/2))

= p (cos(θ/2)v⊥ − sin(θ/2)v⊥û)

= p (cos(θ/2)v⊥ + sin(θ/2)ûv⊥)

= p (cos(θ/2) + sin(θ/2)û) v⊥

= (cos(θ/2) + sin(θ/2)û) (cos(θ/2) + sin(θ/2)û) v⊥

=
[
(cos2(θ/2)− sin2(θ/2))ûû + 2 sin(θ/2) cos(θ/2)û

]
v⊥

= [cos(θ) + sin(θ)û] v⊥

= cos(θ)v⊥ + sin(θ)ûv⊥

= cos(θ)v⊥ + sin(θ) (û× v⊥)

Now the mapping is:

v 7→ v‖ + cos(θ)v⊥ + sin(θ) (û× v⊥)

However this is exactly as desired since the parallel portion is held fixed while
the perpendicular portion is rotated according to the rule from Chapter 2.
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5.2 Exponential Form of Rotation

Recall that for complex numbers it was convenient to write rotations using
exponential form:

z 7→ zeθı̂

This is because the Taylor expansion of ez gives us:

eθı̂ = cos θ + ı̂ sin θ

Similarly for H:

Definition 5.2.1. For any q ∈ H we may define the exponential function via
the Taylor expansion:

eq =

∞∑
n=0

qn

n!

which (we will not prove) converges for all q.

�

It turns out that as a consequence of this we get:

eθû = cos θ + û sin θ

And thus our rotation can be rewritten as:

v 7→ e
θ
2 ûve−

θ
2 û

5.3 About Lines Not Through the Origin

To rotate about a line not through the origin the process is simple. We take
a point on the line and translate that point to the origin, then rotate, then
translate back. Note that the direction vector for the axis does not change.

Thus if we have a line containing point v0 with unit direction vector û then
rotation about this line can be done by:

v 7→ p(v − v0)p∗ + v0

where p is as before for rotations.

Exercise 5.4. Find the result of rotating v = 2ı̂ + 3̂ + 1k̂ by π/4 about the

line passing through (0, 0, 1) with direction u = 3ı̂ + 2̂ + 0k̂.
Note that you need to make u into û.
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6 Reflections

6.1 In Planes Through the Origin

We’ll focus first on planes through the origin since other planes may be dealt
with through translation.

First we must clarify how we are to represent a plane, but this is easy. Since
pure quaternions are equivalent to vectors we may take the standard Calculus
3 approach and simply choose a unit pure quaternion which will represent the
normal vector to the plane.

It turns out we get a particularly nice formula:

Theorem 6.1.1. Given a plane P through the origin represented by the unit
pure quaternion (unit normal vector) n̂ the reflection of the vector v is given
by:

v 7→ n̂vn̂

Proof. Any vector may be decomposed into the sum of two vectors, one in
P (perpendicular to n̂) and one perpendicular to P (a multiple of n̂), using
standard vector projection.

v = v⊥ + v‖

Reflecting in P involves negating v‖ and leaving v⊥ alone.

n̂

v
v‖ = Prn̂v

v⊥

−v‖

Result

We’ll look at these two parts independently.
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Observe that:

n̂v⊥n̂ = n̂(v⊥ × n̂− v⊥ · n̂)

= n̂(v⊥ × n̂− 0)

= n̂× (v⊥ × n̂)− n̂ · (v⊥ × n̂)

= n̂× (v⊥ × n̂)− 0)

= (n̂ · n̂)v⊥ − (n̂ · v⊥)n̂

= (1)v⊥ − (0)n̂

= v⊥

And observe that:

n̂v‖n̂ = n̂(v‖ × n̂− v‖ · n̂)

= n̂(0− v‖ · n̂)

= −(v‖ · n̂)n̂

= −Prn̂v‖

= −v‖

So now for any v we write v = v⊥ + v‖ and then:

n̂vn̂ = n̂(v⊥ + v‖)n̂

= n̂v⊥n̂ + n̂v‖n̂

= v⊥ − v‖

This result is the reflection.

Note that if we have n not normalized then to normalize we simply divide by
|n| and the formula can be rewritten as:

v 7→
(

1

|n|2

)
nvn =

nvn

n · n

Example 6.1. To reflect v = 3ı̂+ 1̂+ 1k̂ in the plane through the origin with
normal vector n = 2ı̂ + 2̂− 1k̂ we calculate:

3ı̂ + 1̂ + 1k̂ 7→
(

1

3

)
(2ı̂ + 2̂− 1k̂)(3ı̂ + 1̂ + 1k̂)(2ı̂ + 2̂− 1k̂)

7→ ...

7→
(

1

3

)
(−1ı̂− 19̂ + 23k̂)
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�

Exercise 6.1. Calculate the result of reflecting v = 3ı̂ + 2̂ + 1k̂ in the plane
through the origin with normal vector n̂ = ı̂. Is this what you expect?

�

Exercise 6.2. Calculate the result of reflecting v = 15ı̂+10̂−20k̂ in the plane
through the origin with normal vector n = 1ı̂ + 1̂ + 2k̂.

�

6.2 In Lines Through the Origin

It’s also possible in three dimensions to reflect through a line given as an axis
û. This reflection is exactly the same as a rotation about û by π radians which
we can then see easily is:

v 7→
(

cos
π

2
+ sin

π

2
û
)

v
(

cos
π

2
− sin

π

2
û
)

7→ ûv(−û)

7→ −ûvû

It’s worth noting that we can derive the formula separately from that approach.

Theorem 6.2.1. Given a line L through the origin represented by the unit
pure quaternion û the reflection of the vector v is given by:

v 7→ −ûvû

Proof. Notice how similar this is to the previous theorem. This is not a coinci-
dence and the proof is very similar, read that one first!

We decompose v into the sum of two vectors, one perpendicular to û and one
parallel to (a multiple of) û. Here’s where the proof differs. In this case reflecting
in L involves leaving the parallel part intact and negating the perpendicular
part, rather than the other way around.
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û

v

v‖

v⊥

−v⊥

Result

For v = v⊥ + v‖ we then have:

−ûvû = −û
(
v⊥ + v‖

)
û

= −
(
ûv⊥û + ûv‖û

)
= −

(
v⊥ − v‖

)
= −v⊥ + v‖

The third equality holds using the same equations we worked out in the proof
dealing with reflections in a plane.

As with rotation, if the vector u is not a unit vector then we can factor out the
normalization:

v 7→ −
(

1

|u|2

)
uvu = −uvu

u · u

Exercise 6.3. Find the result when the vector v = 10ı̂ + 12̂ + 8k̂ is reflected
in the axis û = k̂. Is the result what you expect?

Exercise 6.4. Find the result when the vector v = 10ı̂ + 12̂ + 8k̂ is reflected
in the axis u = 5ı̂ + 1̂ + 2k̂.

6.3 In (Points Through?) The Origin

It’s trivial but worth noting that reflection in the origin is simply negation of
the vector:

v 7→ −v
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Although a bit strange, observe that we can also write this as:

v 7→ −1v1

6.4 Reflections in Other Planes, Lines, and Points

To reflect in a plane not through the origin the process is simple. We take
a point on the plane and translate that point to the origin, then reflect, then
translate back. Note that the normal vector for the plane does not change.

Thus if n̂ is the unit normal vector for the plane and v0 is a point on the plane
then reflection in the plane will be given by:

v 7→ n̂(v − v0)n̂ + v0

Reflection in a line works similarly:

v 7→ −û(v − v0)û + v0

Exercise 6.5. Find the result when v = 3ı̂ + 3̂ + 10k̂ is reflected in the plane
2x+ 4y + 4z = 12 with normal vector arising from the coefficients.

�

Exercise 6.6. Find the result when v = 3ı̂ + 3̂ + 10k̂ is reflected in the line
through (1, 1, 2) with axis u = 1ı̂ + 2̂ + 2k̂.

�

And likewise in a point v0:

v 7→ −(v − v0) + v0

6.5 Two Reflections (Still) Make a Rotation

It ought to seem reasonable at this point that if we reflect in two planes through
the origin, one after the other, that the result is a rotation about the axis formed
by the intersection of the two.

Let’s check that this is the result. Suppose two planes P1 and P2 have unit
normal vectors n̂1 and n̂2 respectively and meet at an angle of θ. Suppose we
wish to reflect in P1 first and P2 second.

The axis formed by the intersection of the two has vector n̂1 × n̂2 but this is
probably not a unit vector. Notice that this vector follows the right-hand rule
curling the fingers around the small angle between P1 and P2.
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The unit vector û would be:

û =
n̂1 × n̂2

|n̂1 × n̂2|

and would satisfy:

n̂1 × n̂2 =
n̂1 × n̂2

|n̂1 × n̂2|
|n̂1 × n̂2|

= û|n̂1 × n̂2|
= û|n̂1||n̂2| sin θ
= û(1)(1) sin θ

Keeping in mind also that:

n̂1 · n̂2 = |n̂1||n̂2| cos θ = cos θ

The double-reflection will then be:

v 7→ n̂2(n̂1vn̂1)n̂2

7→ (n̂2n̂1)v(n̂1n̂2)

7→ (n̂2 × n̂1 − n̂2 · n̂1)v(n̂1 × n̂2 − n̂1 · n̂2)

7→ (−û sin θ − cos θ)v(û sin θ − cos θ)

7→ (cos θ + û sin θ)v(cos θ − û sin θ)

This is exactly equal to a rotation of 2θ radians about the axis û.

Note 6.5.1. The direction of rotation here is by the right-hand rule applied to
the vector û. This vector arose from n̂1 × n̂2 and so the direction of û is such
that the right-hand rule rotates n̂1 toward n̂2.

�

Note 6.5.2. The angle betwen n̂1 and n̂2 is not necessarily the angle between
the planes. These could differ by π/2 depending on the relationship of the
normal vectors to the planes.

�

7 Transformation Summary So Far

It’s worth summarizing to notice how similar all these formulas are. We have
the following:
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Rotation about a line û v 7→ pvp∗ where p = cos(θ/2) + sin(θ/2)û
Reflection in a plane n̂ through 0 v 7→ n̂vn̂
Reflection in a line û through 0 v 7→ −ûvû
Reflection in the origin 0 v 7→ −1v1

This is the beauty in using quaternions and will be similar in geometric al-
gebra. Geometric transformations are represented by caculations which are
algebraically speaking quite simple. In this case multiplication of quaternions
gives us rotation and two different reflections in extremely similar forms.

To close this section just note that reflection in a plane is the only reflection
that doesn’t have a negative. Weird.

8 Transformations of Lines and Planes

8.1 Representations of Lines and Planes

The most direct way to store a line in R3 which does not pass through the origin
is with an anchor point and a direction vector (v0,d0). Then the line consists
of all points of the form:

v(t) = v0 + td0

Likewise the most direct way to store a plane in R3 which does not pass through
the origin is with an anchor point and a normal vector (v0,n0). Then the plane
consists of all points v(t) satisfying:

n0 · (v − v0) = 0

8.2 Transformations of Lines

Theorem 8.2.1. To translate the line parametrized by (v0,d0) by q we trans-
late the anchor point v0. The direction vector doesn’t change so d0 is not
touched. That is:

(v0,d0) 7→ (v0 + q,d0)

Proof. In the statement.

Theorem 8.2.2. To rotate the line parametrized by (v0,d0) by θ radians about
the axis û through the origin we rotate both the anchor point and the direction
vector. That is, assign p = cos(θ/2) + sin(θ/2)û and map:

(v0,d0) 7→ (pv0p
∗, pd0p

∗)

Proof. Observe that the original line passes through the points v0 and v0 + d0

and so the rotated line must pass through the points pv0p
∗ and p(v0 + d0)p∗ =

pv0p
∗ + pd0p

∗ and hence has direction vector pd0p
∗.
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Theorem 8.2.3. To reflect the line parametrized by (v0,d0) in a plane through
the origin with unit normal vector n̂ we follow the same approach as rotations
in other words reflect both the anchor point and the direction vector:

(v0,d0) 7→ (n̂v0n̂, n̂d0n̂)

Proof. Similar and omitted.

Rotations of lines about axes not through the origin and reflections of lines in
planes not through the origin must be done using translations as we did with
points.

Exercise 8.1. Find the result when the line (2ı̂ + 0̂ + 1k̂, 3ı̂ + 1̂ + 1k̂) is

rotated by 7.32 radians about the axis through the origin with u = 2ı̂+2̂+1k̂.

�

Exercise 8.2. Find the result when the line (2ı̂ + 0̂ + 1k̂, 3ı̂ + 1̂ + 1k̂) is

rotated by 2.3 radians about the axis through (10, 10, 0) with u = 2ı̂+ 2̂+ 1k̂.
Note: First translate so the axis passes through the origin, then rotate, then
translate back.

�

Exercise 8.3. Find the result when the line (2ı̂ + 0̂ + 1k̂, 3ı̂ + 1̂ + 1k̂) is

reflected in the plane through the origin with normal vector n = 1ı̂ + 1̂ + 2k̂.

�

Exercise 8.4. Find the result when the line (2ı̂ + 0̂ + 1k̂, 3ı̂ + 1̂ + 1k̂) is

reflected in the plane through (4, 3, 0) with normal vector n = 1ı̂ + 1̂ + 2k̂.

�

8.3 Transformations of Planes

Theorem 8.3.1. To translate the plane parametrized by (v0,n0) by q we
translate the anchor point v0. The orientation doesn’t change so the normal
vector n0 is left untouched. That is:

(v0,n0) 7→ (v0 + q,n0)

Proof. In the statement.

The proof of the result for the rotation of planes follows from the fact that
conjugation by a unit quaternion fixes the dot product between vectors. In
other words:

Theorem 8.3.2. For vectors a and b and for a unit quaternion p we have:

(pap∗) · (pbp∗) = a · b
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Proof. We have:

(pap∗) · (pbp∗) = −1

2
(pap∗pbp∗ + pbp∗pap∗)

= −1

2
(pa(1)bp∗ + pb(1)ap∗)

= −1

2
(p(ab + ba)p∗)

= p(a · b)p∗

= pp∗(a · b)

= 1(a · b)

= a · b

Now then:

Theorem 8.3.3. To rotate the plane P parametrized by (v0,n0) by θ radians
about the axis û through the origin yielding the new plane P ′ we rotate both the
anchor point and the normal vector. That is, assign p = cos(θ/2) + sin(θ/2)û
and map:

(v0,n0) 7→ (pv0p
∗, pn0p

∗)

Proof. We have:

n0 · (v − v0) = (pn0p
∗) · (p(v − v0)p∗)

= (pn0p
∗) · (pvp∗ − pv0p

∗)

It follows that v ∈ P iff pvp∗ ∈ P ′.

Theorem 8.3.4. To reflect the plane parametrized by (v0,n0) in a plane
through the origin with unit normal vector n̂ we follow the same approach
as rotations in other words reflect both the anchor point and the normal vector:

(v0,n0) 7→ (n̂v0n̂, n̂n0n̂)

Proof. Similar and omitted.

Rotations of lines about axes not through the origin and reflections of lines in
planes, lines, and points not through the origin must be done using translations
as we did with points. Likewise with rotations and reflections of planes.
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Example 8.1. Consider the plane 2x+ y− z = 10. Suppose we wish to rotate
this plane by 0.5 radians about the axis u = 2ı̂ + 3̂− 4k̂. We find the normal
for the plane and any point on the plane:

n0 = 2ı̂ + 1̂− 1k̂

v0 = 0ı̂ + 10̂ + 0k̂

We then find:

û =
1√
29

(2ı̂ + 3̂− 4k̂)

p = cos(0.5/2) +
1√
29

(2ı̂ + 3̂− 4k̂) sin(0.5/2)

Then we find the new normal and point:

pn0p
∗ ≈ 1.9371ı̂ + 0.4827̂− 1.4194k̂

pv0p
∗ ≈ 3.8144ı̂ + 9.1557̂ + 1.2740k̂

Therefore the new plane has equation:

1.9371(x− 3.8133) + 0.4827(y − 9.1557)− 1.4194(z − 1.2740) = 0

�

Exercise 8.5. Find the result when the plane x+2y+z = 4 with normal vector
arising from the coefficients is rotated by 0.2 radians about the axis through the
origin with u = 4ı̂ + 6̂ + 3k̂.
Hint: The plane can be thought of as (v0, n̂) where v0 is any point on the plane
and n̂ is the unit vector arising from the coefficients.

�

Exercise 8.6. Find the result when the plane x + 2y + z = 4 with normal
vector arising from the coefficients is rotated by 4.3 radians about the axis
through (5, 5, 5) with u = 4ı̂ + 6̂ + 3k̂.

�

Exercise 8.7. Find the result when the plane x−y+ z = 1 with normal vector
arising from the coefficients is reflected in the plane x+y+ 2z = 0, with normal
vector also arising from the coefficients.

�

Exercise 8.8. Find the result when the plane x−y+ z = 1 with normal vector
arising from the coefficients is reflected in the plane x+y+2z = 10, with normal
vector also arising from the coefficients.

�
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Exercise 8.9. Find the result when the plane x − y + z = 1 with normal
vector arising from the coefficients is reflected in the line through the origin
with direction u = 4ı̂ + 1̂ + 0k̂.

�

Exercise 8.10. Find the result when the plane x − y + z = 1 with normal
vector arising from the coefficients is reflected in the line through (1, 2, 2) with

direction u = 4ı̂ + 1̂ + 0k̂.

�

9 Slerp

9.1 Basic Slerp

Suppose you have an object located at a certain point vs and you wish to move
it with a constant velocity to another point ve, On way to do this is simply
along a straight line which we can parametrize by:

v(t) = (1− t)vs + tve for 0 ≤ t ≤ 1

These points lie between vs and ve, specifically on the plane containing the
origin as well as these two points. The velocity is constant, it is simply the
distance traveled since the time required is 1.

But suppose we wished to move this object along an arc. For simplicitity sake
let’s assume that both vs and ve are unit quaternions and we wish to move the
object along the shortest curve on the unit sphere.

One solution might simply to normalize the above vectors:

v(t) = (1−t)vs+tve
|(1−t)vs+tve| for 0 ≤ t ≤ 1

While this will follow the desired route the velocity will not be constant.

This can be shown computationally but it more easily seen by this pictoral
example where the straight-line route has been divided into four equal quarter
lengths by the dotted line. Along the staight-line route the time required is
1/4 per quarter-length. When we normalize to get the arc, however, the four
quarter-arcs are not the same length because the distances at the ends are
shorter. Consequently the object speeds up as it moves towards the middle.
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vs

ve

Instead we define the following:

Definition 9.1.1. We define spherical linear interpolation:

Slerp(vs,ve, t) =
sin(θ(1− t))

sin θ
vs +

sin(θt)

sin θ
ve

where 0 < θ < π satisfies cos θ = vs · ve.

�

Theorem 9.1.1. This function has the following properties:

(a) When t = 0 we get Slerp(vs,ve, 0) = vs.

(b) When t = 1 we get Slerp(vs,ve, 1) = ve.

(c) For all t we have:
|Slerp(vs,ve, t)| = 1

(d) The speed of Slerp is constant. In fact if vs and vs are fixed then:∣∣∣∣ ddtSlerp(vs,ve, t)

∣∣∣∣ = |θ|

Proof. The proofs of (a) and (b) are clear when we plug in t = 0 and t = 1.

For (c) first note two facts:

(i) For unit vectors v and w we have:

|αv+βw|2 = (αv+βw)·(αv+βw) = α2v·v+2αβv·w+β2w·w = α2+2αβ cos θ+β2

(ii) sin(θ(1− t)) = sin(θ − θt) = sin θ cos(θt)− sin(θt) cos θ
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From there it’s just a lengthy calculation:

slerp(vs,vt, t) =
sin(θ(1− t))

sin θ
vs +

sin(θt)

sin θ
ve

=
1

sin θ
[sin(θ − θt)vs + sin(αt)ve]

=
1

sin θ
[(sin θ cos(θt)− sin(θt) cos θ) vs + sin(αt)ve]

slerp(vs,vt, t) sin θ = (sin θ cos(θt)− sin(θt) cos θ) vs + sin(αt)ve

|slerp(vs,vt, t)|2 sin2 θ = sin2 θ cos2(θt)− 2 sin θ cos θ sin(θt) cos(θt) + sin2(θt) cos2 θ

+ 2(sin θ cos(θt)− sin(θt) cos θ) sin(θt) cos θ

+ sin2(θt)

= sin2 θ cos2(θt)− 2 sin θ cos θ sin(θt) cos(θt) + sin2(θt) cos2 θ

+ 2 sin θ cos θ sin(θt) cos(θt)− 2 sin2(θt) cos2 θ

+ sin2(θt)

= sin2 θ cos2(θt)− sin2(θt) cos2 θ + sin2(θt)

= sin2(θt)(1− cos2 θ) + sin2 θ cos2(θt)

= sin2(θt) sin2 θ + sin2 θ cos2(θt)

= sin2 θ

|slerp(vs,vt, t)| = 1

For (d) first note:

(i) cos(θ(1− t)) = cos(θ − θt) = cos θ cos(θt) + sin(θt) sin θ

32



From there it’s just another lengthy calculation:

slerp(vs,vt, t) =
sin(θ(1− t))

sin θ
vs +

sin(θt)

sin θ
ve

slerp(vs,vt, t) =
1

sin θ
[sin(θ(1− t))vs + sin(θt)ve]

d

dt
slerp(vs,vt, t) =

1

sin θ
[−θ cos(θ(1− t))vs + θ cos(θt)ve](

sin θ

θ

)
d

dt
slerp(vs,vt, t) = − cos(θ(1− t))vs + cos(θt)ve

= −(cos θ cos(θt) + sin(θt) sin θ)vs + cos(θt)ve(
sin2 θ

θ2

) ∣∣∣∣ ddt slerp(vs,vt, t)

∣∣∣∣2 = cos2 θ cos2(θt) + 2 sin θ cos θ sin(θt) cos(θt) + sin2 θ sin2(θt)

− 2(cos θ cos(θt) + sin(θt) sin θ) cos(θt) cos θ

+ cos2(θt)

= cos2 θ cos2(θt) + 2 sin θ cos θ sin(θt) cos(θt) + sin2 θ sin2(θt)

− 2 cos θ cos2(θt)− 2 sin θ sin(θt) cos(θt) cos θ

+ cos2(θt)

= cos2 θ cos2(θt) + 2 sin θ cos θ sin(θt) cos(θt) + sin2 θ sin2(θt)

− 2 cos2 θ cos2(θt)− 2 sin θ cos θ sin(θt) cos(θt)

+ cos2(θt)

= − cos2 θ cos2(θt) + sin2 θ sin2(θt) + cos2(θt)

= cos2(θt)(1− cos2 θ) + sin2 θ sin2(θt)

= cos2(θt) sin2 θ + sin2 θ sin2(θt)

= sin2 θ(
sin2 θ

θ2

) ∣∣∣∣ ddt slerp(vs,vt, t)

∣∣∣∣2 = sin2 θ∣∣∣∣ ddt slerp(vs,vt, t)

∣∣∣∣2 = θ2∣∣∣∣ ddt slerp(vs,vt, t)

∣∣∣∣ = |θ|

It follows from these facts, and the fact that Slerp(vs,ve, t) is a a linear combi-
nation of vs and ve, that it always lies on the plane they span, which is a plane
through the origin, hence it lies on the great circle joining the two, hence it lies
on the curve of shortest distance.
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The reason we know this is the shortest distance (rather than going the long
way around the great circle) is that the speed is θ. If it were the long way
around it would need to have speed 2π − θ in order to finish.

It travels along that great circle at constant speed, starting at vs at t = 0 and
ending at ve at t = 1.

Example 9.1. Consider the following two unit vectors: Consider the following
two unit vectors:

vs =
1√
5

(0ı̂ + 1̂ + 2k̂)

ve =
1√
13

(3ı̂ + 2̂ + 0k̂)

We find our angle θ via:

cos θ = vs · ve

cos θ =
2√
65

θ = cos−1(2/
√

65)

Note that by default the arccosine function traditionally returns values in the
range [0, π] so we’re getting the right θ here.

The expression for Slerp is then:

Slerp(vs,ve, t) =
sin(θ(1− t))

sin θ

(
1√
5

(0ı̂ + 1̂ + 2k̂)

)
+

sin(θt)

sin θ

(
1√
13

(3ı̂ + 2̂ + 0k̂)

)
Then for example at t = 0.2 we have location:

Slerp(vs,ve, 0.2) ≈ [0.2241; 0.5513; 0.8037]

Exercise 9.1. Consider the following two unit vectors:

vs =
1√
14

(2ı̂ + 1̂ + 3k̂)

ve =
1√
26

(5ı̂ + 0̂ + 1k̂)

(a) Write down the expression for Slerp.

(b) Find the location at t = 0, 0.25, 0.5, 0.75, 1.

�

Exercise 9.2. The two points P = (1, 0, 0) and Q =
(√

2
2 , 0,

√
2
2

)
both lie on

the unit sphere.
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(a) Write down the expression for Slerp going from P to Q.

(b) Find the location at t = 0, 0.25, 0.5, 0.75, 1.

�

9.2 Adapting Slerp

If ve and vs are equidistant from c then we can adapt Slerp to provide a rotation
from ve to vs along the great circle on the sphere of radius R = |vs−c| = |ve−c|
by translating so that c goes to the origin, using the Slerp formula multiplied by
R but with normalized versions of our translated vs and ve, and then translating
back.

In this formula θ is the angle between the translated vs and ve.

NewSlerp(vs,ve, t) = c +R

[
sin(θ(1− t))

sin θ

vs − c

R
+

sin(θt)

sin θ

ve − c

R

]
Exercise 9.3. The two points P = (4, 7, 0) and Q = (5, 4, 2) are equidistant
from C = (1, 3,−1).

(a) Write down the expression for NewSlerp going from P to Q.

(b) Find the location at t = 0, 0.25, 0.5, 0.75, 1.

9.3 Exponential Form

Although we won’t delve into too much detail it is worth saying a few things
about exponentials here and mentioning the exponential version of Slerp. Partly
we do this because it places Slerp in the context of quaternions, as the defini-
tion given above doesn’t really require any quaternion manipulation and partly
because the exponential version is rather elegant.

Definition 9.3.1. For any q ∈ H we may define the exponential function via
the Taylor expansion:

eq =
∞∑
n=0

qn

n!

which (we will not prove) converges for all q.

�

This definition gives rise to the inverse function, the natural logarithm of a
quaternion.

Theorem 9.3.1. If u is a unit quaternion and r ∈ R then if we write:

u = cos θ + û sin θ
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then we obtain:

ut = cos(θt) + û sin(θt)

Proof. Details omitted, but just like with the reals the basic idea is:

ut = et lnu = ...apply series expansion... = cos(θt) + û sin(θt)

Exercise 9.4. Suppose we have the unit quaternion:

u =

√
3

2
+

4

2
√

21
ı̂ +

1

2
√

21
̂ +

1√
21

k̂

(a) Write u in the form cos θ + û sin θ for appropriate û and θ.

(b) Find q2, q1/3 and q9.

�

Corollary 9.3.1. It follows that for any quaternion q we can write q = |q|u
where u = q/|q| and then if we write u as above then we have:

qt = |q|t(cos(θt) + û sin(θt))

Proof. In the statement.

Exercise 9.5. Find an approximate value for (2 + 3ı̂− 1̂ + 4k̂)1.3. To do this
factor out the magnitude and find an approximate value for θ, then proceed
from there.

�

Under this notation we can rewrite Slerp in this particularly convenient form
which doesn’t require us to worry about angles or trig functions explicitly.
They’re taken care of by the quaternion calculation.

Theorem 9.3.2. We have the alternate definition of Slerp:

Slerp(vs,ve, t) = vs
(
v−1s ve

)t
Proof. First since vs is a pure unit quaternion its inverse equals its conjugate
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which equals its negative. Thus we have:

vs
(
v−1s ve

)t
= vs (−vsve)

t

= vs (−(vs × ve − vs · ve))t

= vs (−(vs × ve − cos θ))
t

= vs (cos θ − vs × ve)
t

= vs

(
cos θ − vs × ve

|vs × ve|
|vs × ve|

)t
= vs

(
cos θ − vs × ve

|vs||ve| sin θ
|vs||ve| sin θ

)t
= vs

(
cos θ − vs × ve

sin θ
sin θ

)t
= vs

(
cos(θt)− vs × ve

sin θ
sin(θt)

)
= cos(θt)vs −

sin(θt)

sin θ
vs(vs × ve)

= cos(θt)vs −
sin(θt)

sin θ
((vs · ve)vs − (vs · vs)ve)

= cos(θt)vs −
sin(θt)

sin θ
(cos θ vs − ve)

=

(
cos(θt)− cos θ sin(θt)

sin θ

)
vs +

sin(θt)

sin θ
ve

=

(
sin θ cos(θt)− cos θ sin(θt)

sin θ

)
vs +

sin(θt)

sin θ
ve

=

(
sin(θ − θt)

sin θ

)
vs +

sin(θt)

sin θ
ve

=

(
sin(θ(1− t))

sin θ

)
vs +

sin(θt)

sin θ
ve

Our previous example can then be rewritten:

Example 9.2. Consider the following two unit vectors: Consider the following
two unit vectors:

vs =
1√
5

(0ı̂ + 1̂ + 2k̂)

ve =
1√
13

(3ı̂ + 2̂ + 0k̂)
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The expression for Slerp is then:

Slerp(vs,ve, t) = vs(v
−1
s ve)

t

Then for example at t = 0.2 we have location:

Slerp(vs,ve, 0.2) = vs(v
−1
s ve)

0.2 ≈ [0.2241; 0.5513; 0.8037]

�

10 The Downsides of Quaternions

The quaternions are pretty great, but it’s worth pointing out a couple of issues.

They don’t obviously generalize. For example in R2 there’s no obvious way to
write rotation about a point using a product like pvp∗. We might think of C
as the “2D Version” of H but that’s not really true. With complex numbers we
need exponentials, and trigonometry to represent our transformations.

In an opposite direction it’s not clear whether or how the quaternions might
extend to higher dimensions.

And even in H (and in Calculus 3!) it’s interesting to point out that to represent
a plane we use a normal vector. A quick thought indicates that this is peculiar
since the normal vector is indicating the direction the plane doesn’t go, and we
simply take it for granted that the plane is perpendicular. We don’t do this
with lines, so why do we do this for planes? The answer is that there’s no clear
way in H to denote a plane in an algebraic way which talks about what the
plane is, rather than what it isn’t.

The cross product (which we love) only really makes sense in R3 (it actually
makes sense in R7 too but that’s another story) and this is very specific.

Geometric algebra does the job of abstracting the quaternions in a way that
resolves all these issues.
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