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1 Matrices and Vectors

Definition 1.0.1. A matrix is a rectangular array of numbers. We say it is
n×m if it has n rows and m columns, and that its dimensions are n×m.

Example 1.1. The following is a 3× 5 matrix: 1 0 −1 2 3
0 1.2 8 0 1

−10 0 1 1 4


�

Definition 1.0.2. A vector is an n× 1 matrix.

�

Matrices are generally denoted by upper-case letters A, B, etc. while vectors
are generally denoted by lower-case letters with a bar over them or as boldface
b, x, etc.

Example 1.2. We might write:

A =

 1 0 −1 2 3
0 1.2 8 0 1

−10 0 1 1 4

 and v =


1
−1

0
3


�

Definition 1.0.3. A matrix is square if m = n.

�

If a matrix is denoted by A then the entry in row i and column j will typically
be denoted aij or a(i,j).

If a vector is denoted by b then the entry in row i will typically be denoted by
bi.

Definition 1.0.4. If A is an n ×m matrix and b is an m × 1 vector then we
may define the product of a matrix and a vector Ab as the linear combination
of columns of A using the entries in b.

In other words if A = [a1 ...am] and b = [b1 ... bm]T then:

Ab = b1a1 + ...+ bmam

In more detail:

Ab =


a11b1 + a12b2 + ...+ a1mbm
a21b1 + a22b2 + ...+ a2mbm

...
an1b1 + an2b2 + ...+ anmbm
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�

Example 1.3. We have:

[
1 3 −1
0 2 −2

] 5
6
7

 = 5

[
1
0

]
+ 6

[
3
2

]
+ 7

[
−1
−2

]

=

[
(1)(5) + (3)(6) + (−1)(7)
(0)(5) + (2)(6) + (−2)(7)

]
=

[
16
−2

]

�

Exercise 1.1. Given the matrix and vector:

A =

 4 −1 0 2
5 1 3 2
0 3 7 3

 and b =


3

10
−4

8


Write Ab first as a linear combination and then as a single vector result.

�

Definition 1.0.5. If A is an n ×m matrix and B is an m × p matrix then if
the columns of B are denoted b1, ...,bp then we may define the product of two
matrices AB by

AB = [Ab1 Ab2 ... Abp]

�

Example 1.4. We have:

[
1 3 −1
0 2 −2

] 5 0
6 −2
7 1

 =

[ 1 3 −1
0 2 −2

] 5
6
7

 [
1 3 −1
0 2 −2

] 0
−2

1


=

[
16 −7
−2 −6

]

�

Notice that AB may be defined when BA is not (because of the dimensions).
Even if both AB and BA are defined they may be different sizes. Even when
they’re the same size they may be have different entries.

Definition 1.0.6. The main diagonal of a matrix A consists of the entries a11,
a22, ... , ann.

3



�

Definition 1.0.7. The identity matrix In is the n × n matrix with 1s on the
main diagonal and 0s elsewhere. When the size is clear or implied we simply
write I.

�

Definition 1.0.8. If A is a square matrix then the transpose of A, denoted AT ,
is the matrix whose (i, j) entry equals aji. That is, it is obtained by reflecting
A in the main diagonal.

�

Definition 1.0.9. A square matrix A is symmetric if AT = A.

�

Definition 1.0.10. If A is an n× n square matrix then A is invertible if there
is another n× n matrix, denoted A−1, such that AA−1 = I and A−1A = I.

�

Example 1.5. Observe that[
5 7
2 3

] [
3 7
−2 5

]
=

[
1 0
0 1

]
so that [

5 7
2 3

]−1

=

[
3 7
−2 5

]
and

[
3 7
−2 5

]−1

=

[
5 7
2 3

]
and both matrices are invertible.

�

Most matrix inverses are not nearly this pretty, nor are inverses easy to find.

The exception is the 2× 2 case.

Theorem 1.0.1. If

A =

[
a b
c d

]
then A is invertible iff ad− bc 6= 0 in which case[

a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
Proof. Omitted.

Exercise 1.2. Show that the formula above is valid.
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Exercise 1.3. Calculate the inverse of the matrix:

A =

[
5 −3
1 8

]

�

Not all matrices are invertible but most are, where most means something rig-
orous and meaningful.

Definition 1.0.11. If v,w ∈ Rn then we define the dot product (inner product)

v ·w = vTw = v1w1 + ...+ vnwn

�

Definition 1.0.12. If v ∈ Rn then the magnitude (norm, length) of v is defined
by

|v| =
√
v21 + ...+ v2n

�

Note: Frequently ||v|| is used.

Definition 1.0.13. A diagonal matrix is a square matrix A such that aij = 0
for i 6= j.

�

2 Determinants

Definition 2.0.1. If A is an n×m matrix then the matrix minor denoted by
Aij is the (n − 1) × (m − 1) matrix obtained by removing row i and column j
from A.

�

Definition 2.0.2. The determinant of a square matrix A denoted det(A) or
just detA, or by writing the matrix using vertical lines rather than brackets, is
defined recursively as follows:

• If A is 2× 2 then
det(A) = a11a22 − a12a21

• If A is larger than 2× 2 then

det(A) = +a11det(A11)− a12det(A12) + a13det(A13)− ...± a1ndet(A1n)

�

5



Example 2.1. For a 2× 2

det

[
5 3
−2 6

]
=

∣∣∣∣ 5 3
−2 6

∣∣∣∣ = (5)(6)− (3)(−2) = 36

�

Example 2.2. For a 3× 3

det

 1 2 −3
0 5 1
−2 4 7

 = +1 det

[
5 1
4 7

]
− 2 det

[
0 1
−2 7

]
+ (−3) det

[
0 5
−2 4

]
= +1(31)− 2(2) + (−3)(10)

= −3

�

Exercise 2.1. Calculate the determinant of the matrix:

A =

[
6 −5

10 7

]
�

Exercise 2.2. Calculate the determinant of the matrix:

A =

 1 2 −3
5 0 2
9 11 4


�

Theorem 2.0.1. A square matrix A is invertible iff det(A) 6= 0.

Proof. Omitted.

Example 2.3. The matrix:  1 2 −3
0 5 1
−2 4 7


has determinant −3 6= 0 and hence is invertible.

�

Exercise 2.3. Are the matrices in the previous exercises invertible?

�

Mathematically speaking since the chances of having det(A) = 0 are very small
(if you randomly throw a bunch of numbers into a matrix it’s highly unlikely
that the determinant will be zero) it is in this sense that we can say that most
matrices are invertible since most matrices have nonzero determinant.
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3 Systems of Equations

Theorem 3.0.1. A linear system of m equations in the variables x1, ..., xn given
by

a11x1 + a12x2 + ...+ a1nxn = b1

a21x1 + a22x2 + ...+ a2nxn = b1

... = ...

am1x1 + am2x2 + ...+ amnxn = bm

may be represented by the matrix equation

Ax = b

Proof. This is just a rewriting using definitions.

Example 3.1. The system of equations

2x1 + 3x2 − 1x3 = 7

−1x1 + 7x2 + 4x3 = −2

may be rewritten as [
2 3 −1
−1 7 4

]x1x2
x3

 =

[
7
−2

]

�

Theorem 3.0.2. The matrix equation Ax = b has either no solutions, one
solution, or infinitely many solutions. There is one solution iff A is invertible
and in that case the solution is given by x = A−1b.

Proof. Omitted.

Example 3.2. The matrix equation[
5 7
2 3

]
x =

[
2
−1

]
has exactly one solution because the matrix is invertible as we saw earlier. The
solution is given by

x =

[
5 7
2 3

]−1 [
2
−1

]
=

[
3 −7
−2 5

] [
2
−1

]
=

[
13
−9

]
�
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4 Linear Independence

Definition 4.0.1. A set of vectors {v1, ...,vn} is linearly independent if a1v1 +
...+ anvn = 0 implies a1 = ... = an = 0.

�

As a consequence of this a set of just two vectors is linearly independent iff
neither is a multiple of the other.

Example 4.1. The set of vectors
 1

0
2

 ,
 0

5
−1


is a linearly independent set because the vectors are not multiples of one another.

�

A classic way of thinking of linear independence is that it is impossible to write
any one of the vectors as a linear combination of the other vectors.

Exercise 4.1. The following set of three vectors is clearly not linearly indepen-
dent. Show this by finding a linear combination with nonzero coefficients for
which the result is 0. Hint: It’s fairly obvious.

 1
2
3

 ,
 1

1
1

 ,
 4

6
8


�

One of the consequences of having a linearly independent set is that if some
vector v is a linear combination of that set then only that specific linear com-
bination works.

Definition 4.0.2. If a set of vectors is not linearly independent then it is
linearly dependent .

�

A classic way of thinking of linear dependence is that one vector may be written
as a linear combination of the others.

Example 4.2. The set of vectors
 1
−1

2

 1
1
0

 ,
 0

1
−1



8



is linearly dependent. Observe that 1
1
0

 = 1

 1
−1

2

+ 2

 0
1
−1


�

Exercise 4.2. From the previous exercise write each vector as a linear combi-
nation of the other two.

�
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5 Vector Spaces and Bases

Definition 5.0.1. A vector space is a nonempty set V of vectors such that the
following properties hold:

(a) 0 ∈ V .

(b) If u,v ∈ V then u + v ∈ V .

(c) u ∈ V then −u ∈ V .

(d) If u ∈ V and c ∈ R then cu ∈ V .

�

Note that (a) and (c) actually follow from (b) and (c) together but it’s worth
listing on its own anyway.

Exercise 5.1. Show that (a) and (c) follow from (b) and (c) together.

�

Note 5.0.1. The formal definition of a vector space is actually a little more
abstract and includes rules about which field we’re working over, rules of com-
mutativity and associativity, and so on, but if we’re a starting with vectors in
Rn and the scalars are in R then this simplifies the definition immensely.

�

Note 5.0.2. On a related note, technically here we’re taking all our vectors
from some Rn and we’re constructing a vector space which is a subspace of Rn.

�

Example 5.1. The set of vectors in R3 with zero in the first and second entries
form a vector space. Technically a vector subspace of R3 but still a vector space
in their own right.

�

Definition 5.0.2. Given a set of vectors S = {v1, ...,vn} then the span of
S denoted span(S) is the set of all linear combinations of vectors in S. More
rigorously

span(S) =

{
a1v1 + ...+ anvn

∣∣∣∣ a1, ..., an ∈ R
}

�

Example 5.2. If

S =


 1

0
2

 ,
 0

5
−1
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Then

span(S) =

a1
 1

0
2

+ a2

 0
5
−1

 ∣∣∣∣ a1, a2 ∈ R


�

Theorem 5.0.1. Given a set of vectors S = {v1, ...,vn}, the span of S is a
vector space.

Proof. Omitted. This is straightfoward - simply show in general that linear
combinations of the spanning vectors satisfy the criteria for the definition.

Definition 5.0.3. If V is a vector space then a basis for V is a linearly inde-
pendent set B of vectors such that V = span(B).

�

Example 5.3. The set

B =


 1

0
0

 ,
 0

1
−1

 ,
 0

0
2


is linearly independent and hence is a basis for span(B) = R3. Note that we
haven’t shown they’re linearly independent.

�

Example 5.4. The set

B =


 1

0
0

 ,
 0

1
−1

 ,
 1

1
−1


is linearly dependent (the third is the sum of the first two) and hence is not a
basis for span(B). We can still take this span, of course.

�

Essentially a basis for a vector space V is a set of building blocks B such that
each vector in V can be written uniquely as a linear combination of vectors in
B.

Definition 5.0.4. Given a matrix A, the column space of A denoted col(A) is
the span of the columns of A.

�

Theorem 5.0.2. Given a matrix A, col(A) equals the set of vectors Ax.
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Proof. This follows from the definition of span and of matrix-vector multiplica-
tion, since Ax is (by definition) equal to the linear combination of the columns
of A using the weights in x.

Example 5.5. We have:

col

 1 1
0 3
−1 2

 = span


 1

0
−1

 ,
1

3
2


�

Theorem 5.0.3. Every vector space has a basis and the number of vectors in
a basis of a vector space is independent of the choice of basis. That is, every
basis has exactly the same number of vectors as every other basis.

Proof. Omitted.

Worth noting is that the process of finding a basis for a vector space depends
strongly on how the vector space is given in the first place. If it’s given as the
span of a set of vectors we can check if they’re linearly independent (if they
are, we’re done) and if not then we can iteratively throw out vectors which are
linear combinations of previous vectors. For example if we have {v1,v2, ...,vi}
we can start by asking - is v2 a multiple of v1 and if so, throw it out. Then - is
v3 a linear combination of v1 and v2 (or just v1 if we threw v2 out) and if so,
throw it out. Then - we keep going until vi.

Definition 5.0.5. For a vector space V the dimension of V denoted dim(V ),
is defined as the number of vectors in a basis of V .

Example 5.6. For example

dim

col

 1 1
0 3
−1 2

 = dim

span


 1

0
−1

 ,
1

3
2


 = 2

�

Note 5.0.3. We can’t guarantee that dim (span {v1, ...vi}) = i unless we know
that the vectors are linearly independent.

�

6 Orthogonality and Orthonormality

Definition 6.0.1. Two vectors are orthogonal if their dot product equals zero.
A set of vectors {v1, ...,vn} is orthogonal if vi · vj = 0 for all i 6= j.
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�

Example 6.1. The set of vectors
 1

2
1

 ,
 0

1
−2

 ,
 −5

2
1


is an orthogonal set of vectors.

�

Definition 6.0.2. A set of vectors {v1, ...,vn} is orthonormal if vi · vj = 0 for
all i 6= j and ||vi|| = 1 for all i.

�

Example 6.2. The set of vectors in the previous example is orthonormal if
each vector is divided by its magnitude:

 1/
√

6

2/
√

6

1/
√

6

 ,
 0

1/
√

5

−2/
√

5

 ,
 −5/

√
30

2/
√

30

1/
√

30


is an orthonormal set of vectors.

�

As we have mentioned, every vector space has a basis. In fact every vector
space has an orthonormal basis. This can be constructed by taking a regular
basis and applying the Gram-Schmmidt process. We’ll see later that obtaining
an orthonormal basis is usually ideal but often computationally messy since the
entries in the vectors are usually not so pretty, as above.

Definition 6.0.3. A square matrix is an orthogonal matrix if the column vec-
tors form an orthonormal set. This definition is often a bit confusing (we might
prefer an “orthonormal” matrix but that’s not the way it goes).

�

Example 6.3. The matrix

A =

 1/
√

6 0 −5/
√

30

2/
√

6 1/
√

5 2/
√

30

1/
√

6 −2/
√

5 1/
√

30


is orthogonal.

Theorem 6.0.1. A square matrix A is orthogonal iff ATA = AAT = I. That
is, if AT = A−1.

Proof. Details omitted but this just follows from the definitions of a matrix
product as well as vectors being orthogonal and unit vectors.
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Note 6.0.1. Orthogonal matrices are great simply because A−1 = AT and so
the inverse is really convenient. In addition they’re usual from a computational
standpoint because they lead to handy things like QR decompositions (A = QR
where Q is orthogonal and R is upper triangular) which are useful for least-
squares problems and calculating eigenvalues and eigenvectors.

�

7 Eigenvalues and Eigenvectors

Definition 7.0.1. If A is an n×n matrix then λ is an eigenvalue for A if there
is a nonzero vector v such that Av = λv. In this case v is the corresponding
eigenvector and together they form an eigenpair (λ,v).

�

Note 7.0.1. Notice that any nonzero multiple of an eigenvector is also an
eigenvector.

�

Definition 7.0.2. The set of all eigenvectors for a given eigenvalue along with
the zero vector 0̄ is called the eigenspace of that eigenvalue.

�

Theorem 7.0.1. The eigenspace of an eigenvalue is a vector space

Proof. Just go through the calculations of the necessities.

Note 7.0.2. Notice that technically 0 is not an eigenvector but it is included
in the eigenspace in order to make it a vector space.

�

Example 7.1. The matrix

A =

[
4 7
1 −2

]
has two eigenvalues:

• One is λ1 = 5 with eigenvector

[
7
1

]
because:

[
4 7
1 −2

] [
7
1

]
=

[
35
5

]
= 5

[
7
1

]

Thus any nonzero multiple of

[
7
1

]
is also an eigenvectors and the set of all

such nonzero multiples, along with 0̄, form the eigenspace for λ1 = 5.
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• The other eigenvalue is λ2 = −3 with eigenvector

[
1
−1

]
. This can be

easily checked and followed up in the same way as above.

We haven’t addressed in this example how we know that there are only two, or
that we know that each has a one-dimensional eigenspace. We won’t address all
of the associated details but just hit the main points now.

�

Definition 7.0.3. If A is an n × n matrix then the characteristic polynomial
of A denoted char(A), is defined by

char(A) = det(λI −A)

Note: Some authors define the characteristic polynomial to be:

char(A) = det(A− λI)

These two definitions differ by a factor of (−1)n.

�

Theorem 7.0.2. The eigenvalues of a matrix A are the roots of the character-
istic polynomial.

Proof. The value λ is an eigenvalue iff there is some nonzero v with Av = λv,
which may be rewritten (A − λI)v = 0. This has a nonzero solution (such a
v exists) if and only if det(A − λI) = 0 which is precisely if λ is a root of the
characteristic polynomial.

Example 7.2. Revisiting the matrix

A =

[
4 7
1 −2

]
We see the the characteristic polynomial is:

char

[
4 7
1 −2

]
= det

[
λ− 4 7

1 λ+ 2

]
= (λ+ 2)(λ− 4)− 7

= λ2 − 2λ− 15

= (λ− 5)(λ+ 3)

This has roots, and hence the matrix has eigenvalues, λ = 5 and λ = −3.

�
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Example 7.3. If we have:

A =

 1 2 −1
1 2 3
0 4 3


then

char(A) = det(λI −A)

= det

 λ− 1 −2 1
−1 λ− 2 −3

0 −4 λ− 3


= λ3 − 6λ2 − 3λ+ 16

The eigenvalues of the matrix are roots of this, λ1 ≈ 6.0593, λ2 ≈ −1.6549 and
λ3 ≈ 1.5956.

�

Note 7.0.3. One handy trick to remember is that when A is 2 × 2 then
char(A) = λ2 − Tr(A)λ + Det(A), where Tr is the trace (sum of the main
diagonal) and Det is of course the determinant.

�

Note 7.0.4. For a triangular matrix the eigenvalues are simply the values on
the main diagonal.

�

Since the characteristic polynomial has degree n this tells us that an n × n
matrix has n eigenvalues, counting multiplicity, some of which may be complex.

Example 7.4. Consider the matrix:

A =

1 2 3
0 1 2
0 0 2


This matrix has two eigenvalues, λ = 1 (with multiplicity 2) and λ = 2 (with
multiplicity 1).

�

Exercise 7.1. Find the characteristic polynomials and eigenvalues of the fol-
lowing matrices:

(a) A =

[
4 −5
1 −2

]
(b) A =

[
2 −1
1 4

]
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(c) A =

[
−1 −2

2 −1

]
�

Once the eigenvalues have been found then for each eigenvalue λ the correspond-
ing eigenvectors (the eigenspace) are found by solving the matrix equation:

Av = λv

(λI −A)v = 0

This is a standard linear algebra procedure we won’t review. Usually we’ll do
this in software.

Theorem 7.0.3. If A is an n×n matrix and λ is an eigenvalue with eigenspace
V then the dimension of the eigenspace is less than or equal to the multiplicity
of λ as a root of the characteristic polynomial.

Proof. Omitted.

Example 7.5. The matrix

A =

 2 0 0
10 12 −30
5 5 −13


Has characteristic polynomial

λ3 − λ2 − 8λ+ 12 = (λ− 2)2(λ+ 3)

Consequently the eigenspace for λ1 = 2 has dimension either 1 or 2. In this case
it’s 2 but that’s a bit more work to show.

�

Consider then the overall picture. For an n × n matrix A the multiplicities of
the eigenvalues (as roots of the characteristic polynomial) add up to n. For
each eigenvalue the dimension of the corresponding eigenspace is less than or
equal to the multiplicity. Consequently then the sum of the dimensions of the
eigenspaces is less than or equal to n.

8 Diagonalizable Matrices

Definition 8.0.1. An n× n matrix A is diagonalizable if there exists an n× n
invertible matrix P and an n× n diagonal martix D such that

A = PDP−1

.
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�

Theorem 8.0.1. An n × n matrix A is diagonalizable iff the dimension of
each eigenspace equals the multiplicity of the corresponding eigenvalue in the
characteristic polynomial. In other words if the sum of the dimensions of the
eigenspaces equals n.

Proof. Omitted.

From a computational standpoint diagonalizable matrices are nice to work with

because we can raise them to powers easily, since Ak =
(
PDP−1

)k
= PDkP−1.

This is less likely to have computational issues than doing Ak itself, iteratively.

Theorem 8.0.2. If A is diagonalizable then the invertible matrix P is formed
using the eigenvectors of A and the diagonal matrix D is formed using the
eigenvalues of A. The eigenvector in column i corresponds to the eigenvalue in
column i.

Proof. Omitted.

Note 8.0.1. Note that there are a variety of ways we can do this as long
as the entries in D and the columns of P correspond correctly. Hence the
diagonalization of a matrix is not unique.

�

Example 8.1. If

A =

 2 0 0
10 12 −30
5 5 −13


Then

A = PDP−1

where

P =

 0 0 0.4016
−0.8944 −0.9487 −0.9006
−0.4472 −0.3162 −0.1663


D =

 −3 0 0
0 2 0
0 0 2


In this case the first column of P is an eigenvector corresponding to the eigen-
value λ1 = −3 and the second and third columns of P are eigenvectors corre-
sponding to the eigenvalue λ2 = 2 which has multiplicity 2 and for which the
dimension of the eigenspace is also 2.

�
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Definition 8.0.2. An n × n matrix A is orthogonally diagonalizable if there
exists an n× n orthogonal matrix Q and an n× n diagonal matrix D such that

A = QDQT

�

Theorem 8.0.3. A matrix A is orthogonally diagonalizable iff it is symmetric.

Proof. Omitted.

Example 8.2. The matrix

A =

 1 2 −1
2 5 3
−1 3 4


is symmetric hence orthogonally diagonalizable.

�

9 Linear Transformations

Definition 9.0.1. If Rn and Rm are vector spaces then a transformation (map-
ping, function)

T : Rn → Rm

is linear if for all scalars α, β and vectors v,w we have:

T (αv + βw) = αT (v) + βT (w)

�

A transformation T : Rn → Rm is often written as:

T (x1, ..., xn) = (y1, ..., ym)

for convenience but really means:

T


 x1

...
xn


 =


 y1

...
yn




Exercise 9.1. Determine whether the following transformations are linear or
not. Do this by straightforward computation. If the transformation is not linear
give specific examples which demonstrate this.

(a) T (x1, x2) = (x1 + 2x2, x1,−3x2)
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(b) T (x1, x2, x3) = (−x1, x1 + x2)

(c) T (x1, x2) = (x1 + 2, 3x2)

�

Theorem 9.0.1. If a transformation T is linear then T (0) = 0.

Proof. This is obvious since for any nonzero v we have T (0) = T (0v) = 0T (v) =
0.

Theorem 9.0.2. A transformation T : Rm → Rn is linear if there is some m×n
matrix M such that for all v we have T (v) = Mv. Moreover if this is the case
then:

A = [T (e1) ... T (en)]

Proof. Omitted.

This theorem is computationally important because it is constructive, allowing
us to explicitly construct the transformation matrix for a linear transformation.

Example 9.1. It is a fact that the transformation T : R2 → R3 given by
T (x1, x2) = (2x1, x2−x1, 3x1) is linear. To find the corresponding 3× 2 matrix
we check:

T (e1) = T (1, 0) = (1,−1,−3)

T (e2) = T (0, 1) = (0, 1, 0)

Thus the transformation is represented by the matrix:

A = [T (e1) T (e2)] =

 1 0
−1 1
−3 0


In other words for all v ∈ R2 we have:

T (v) =

 1 0
−1 1
−3 0

v

�

Exercise 9.2. For the transformations in the previous exercise which are linear,
determine the corresponding matrices.

It’s often difficult to check the explicit definition when checking if a given trans-
formation is linear. Another roundabout way to do this is as follows:

(i) Assume it is and find the matrix which represents it.

(ii) Check if the matrix does what the transformation does.
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(iii) If so then it’s linear. If not then we have a contradiction and it’s not.

Exercise 9.3. Use the above process to check if T (x1, x2) = (5x1+7x2, 5x1−x2)
is linear.

�

Exercise 9.4. Use the above process to check if T (x1, x2) = (x21x2, x1 − x2) is
linear.

�

21


	Matrices and Vectors
	Determinants
	Systems of Equations
	Linear Independence
	Vector Spaces and Bases
	Orthogonality and Orthonormality
	Eigenvalues and Eigenvectors
	Diagonalizable Matrices
	Linear Transformations

