1. Write down the matrix product in \mathbb{RP}^2 which rotates the four points $[1 : 2], [0 : 0], [-5 : 2]$ and $[8 : 10]$ by 4.1 radians about the point $(56, 70)$.

2. Suppose a transformation of the plane is expressed as $z \mapsto e^{i\pi/6}(z - (2 + 4i))$ when treating the plane as \mathbb{C}. Rewrite this transformation as a product of matrices in \mathbb{RP}^2.

3. Suppose the point and normal pair (v_0, n_0) represents a plane \mathcal{P} and the point and direction pair (v_1, d_1) represents a line \mathcal{L}.

 (a) If \mathcal{P} is rotated by θ radians about \mathcal{L} according to the right-hand rule applied to \mathcal{L}, write down the algebraic quaternion expressions (point and normal pair) for the resulting plane.

 (b) If \mathcal{L} is reflected in \mathcal{P}, write down the algebraic quaternion expressions (point and direction pair) for the resulting line.
4. In \mathbb{RP}^2 if you follow the ends of the parabola $x = y^2$, which point(s) at infinity do they approach?

5. Suppose L is a line in \mathbb{C} represented by the closest point to the origin $z_0 \in \mathbb{C}$. Suppose L is rotated about the point $c_0 \in \mathbb{C}$. Describe a criteria (with words, pictures, or algebraically) under which the rotation of L would never pass through the origin, no matter what angle of rotation was used.

6. In \mathbb{C} show that the composition of two rotations by different angles about different points can be written as a single rotation followed by a translation.
7. Suppose the location of an object is given by the parametrization \(\mathbf{r}(t) = t \mathbf{i} - t^2 \mathbf{j} \) for \(t \geq 0 \). Consider the perspective projection with \(y = 10 \).

(a) Find the projection of the object on the \(x \)-axis at time \(t \).

(b) Where does the projection of the object go as \(t \to \infty \)?

(c) How far to the right on the \(x \)-axis does the object go before reversing course?
8. Show algebraically using \mathbb{H} that rotation by θ followed by rotation by $-\theta$ cancel. [Ch5:10pts]

9. Suppose $\mathbf{v}, \mathbf{w} \in \mathbb{R}^3$ are perpendicular. Write down an expression using simple vector operations (no quaternions) for the result of rotating \mathbf{v} by θ radians in the direction of \mathbf{w}. [Ch2:10pts]