1. Write down the matrix product in \(\mathbb{R}P^2 \) which rotates the four points \([1 : 2], [0 : 0], [-5 : 2] \) and \([8 : 10]\) by 4.1 radians about the point (56, 70).

Solution:

\[
\begin{bmatrix}
1 & 0 & 56 \\
0 & 1 & 70 \\
0 & 1 & 1
\end{bmatrix}
\begin{bmatrix}
\cos(4.1) & -\sin(4.1) & 0 \\
\sin(4.1) & \cos(4.1) & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 & -56 \\
0 & 1 & -70 \\
0 & 1 & 1
\end{bmatrix}
\]

2. Suppose a transformation of the plane is expressed as \(z \mapsto e^{\pi/6}(z - (2 + 4i)) \) when treating the plane as \(\mathbb{C} \). Rewrite this transformation as a product of matrices in \(\mathbb{R}P^2 \).

Solution:

\[
\begin{bmatrix}
cos(\pi/6) & -sin(\pi/6) & 0 \\
sin(\pi/6) & cos(\pi/6) & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 & -2 \\
0 & 1 & -4 \\
0 & 0 & 1
\end{bmatrix}
\]

3. Suppose the point and normal pair \((v_0, n_0)\) represents a plane \(\mathcal{P} \) and the point and direction pair \((v_1, d_1)\) represents a line \(\mathcal{L} \).

(a) If \(\mathcal{P} \) is rotated by \(\theta \) radians about \(\mathcal{L} \) according to the right-hand rule applied to \(\mathcal{L} \), write down the algebraic quaternion expressions (point and normal pair) for the resulting plane.

Solution:

Let \(p = \cos(\theta/2) + \frac{v_1}{|v_1|} \sin(\theta/2) \) and then:

\[(v_0, n_0) \mapsto (pv_0 - v_1)p^* + v_1, pn_0p^* \]

(b) If \(\mathcal{L} \) is reflected in \(\mathcal{P} \), write down the algebraic quaternion expressions (point and direction pair) for the resulting line.

Solution:

Let \(\hat{n} = \frac{n_0}{|n_0|} \) and then:

\[(v_1, d_1) \mapsto (\hat{n}(v_0 - v_1))\hat{n} + v_1, \hat{n}d_0\hat{n} \]

4. In \(\mathbb{R}P^2 \) if you follow the ends of the parabola \(x = y^2 \), which point(s) at infinity do they approach?

Solution:

For such a point as we go to the right, \(y \rightarrow \pm \infty \) and then:

\[[x; y; 1] = [y^2; y; 1] \equiv [1; 1/y; 1/y^2] \rightarrow [1; 0; 0] \]
5. Suppose \(L \) is a line in \(\mathbb{C} \) represented by the closest point to the origin \(z_0 \in \mathbb{C} \). Suppose \(L \) is rotated about the point \(c_0 \in \mathbb{C} \). Describe a criteria (with words, pictures, or algebraically) under which the rotation of \(L \) would never pass through the origin, no matter what angle of rotation was used.

Solution:

Let \(C \) be the circle of radius \(|c_0| \) centered at \(c_0 \) (meaning the circle which touches the origin). Then no rotation of \(L \) will result in \(L \) hitting the origin iff \(L \) outside this circle. This means that the distance from \(L \) to \(c_0 \) is greater than \(|c_0| \).

6. In \(\mathbb{C} \) show that the composition of two rotations by different angles about different points can be written as a single rotation followed by a translation.

Solution:

Two such rotations yield a mapping:

\[
\begin{align*}
\text{Rotation} & : z \mapsto e^{i\theta_2}(e^{i\theta_1}(z - z_1) + z_1 - z_2) + z_2 \\
\rightarrow & e^{i\theta_2}(e^{i\theta_1}z - e^{i\theta_1}z_1 + z_1 - z_2) + z_2 \\
\rightarrow & e^{i(\theta_1+\theta_2)}z - e^{i(\theta_1+\theta_2)}z_1 + e^{i\theta_2}(z_1 - z_2) + z_2 \\
\text{Translation} & : \quad z \mapsto z.
\end{align*}
\]

7. Suppose the location of an object is given by the parametrization \(\mathbf{r}(t) = t \mathbf{i} - t^2 \mathbf{j} \) for \(t \geq 0 \). Consider the perspective projection with \(y = 10 \).

(a) Find the projection of the object on the \(x \)-axis at time \(t \).

Solution:

The object is at \([t; -t^2; 1]\) and so:

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & -0.1 & 1
\end{bmatrix}
\begin{bmatrix}
t \\
-t^2 \\
1
\end{bmatrix} =
\begin{bmatrix}
t \\
0 \\
1 + 0.1t^2
\end{bmatrix} =
\begin{bmatrix}
t/(1 + 0.1t^2) \\
0 \\
1
\end{bmatrix}
\]

So the object projects to \(x = t/(1 + 0.1t^2) \)

(b) Where does the projection of the object go as \(t \to \infty \)?

Solution:

As \(t \to \infty \) we see \(x \to 0 \).

(c) How far to the right on the \(x \)-axis does the object go before reversing course?

Solution:

We have:

\[
\frac{d}{dt} \frac{t}{1 + 0.1t^2} = \frac{1(1 + 0.1t^2) - t(0.2t)}{(1 + 0.2t^2)^2}
\]

which equals zero when \(t = \sqrt{10} \) and so the object is at \(x = \sqrt{10}/(1+0.1(\sqrt{10})^2) \).
8. Show algebraically using \mathbb{H} that rotation by θ followed by rotation by $-\theta$ cancel. [Ch5:10pts]

Solution:

For the axis \mathbf{u} the first rotation has $p_1 = \cos(\theta/2) + \sin(\theta/2)\mathbf{u}$ and the second rotation has $p_2 = \cos(-\theta/2) + \sin(-\theta/2)\mathbf{u} = \cos(\theta/2) - \sin(\theta/2)\mathbf{u} = p_1^*$. The result is then

$$\mathbf{v} \mapsto p_2 p_1 \mathbf{v} p_1^* p_2^* = p_1^* p_1 \mathbf{v} p_1 = \mathbf{v}$$

where the last equality holds since for unit quaternions the conjugate is the inverse.

9. Suppose $\mathbf{v}, \mathbf{w} \in \mathbb{R}^3$ are perpendicular. Write down an expression using simple vector operations (no quaternions) for the result of rotating \mathbf{v} by θ radians in the direction of \mathbf{w}. [Ch2:10pts]

Solution:

The only issue is that \mathbf{w} needs to be the same length as \mathbf{v} in order to use the nicest formula we have. This is easy to fix:

$$\mathbf{v} \mapsto (\cos \theta) \mathbf{v} + (\sin \theta) \frac{\|\mathbf{v}\|}{\|\mathbf{w}\|} \mathbf{w}$$