NOTES ON ACCELERATION AND CURVATURE

1. Acceleration

Let r(t) parametrize a smooth curve C. The velocity is v(t) = r'(¢) and the
acceleration is a(t) = v/(t) = r”(t). When we normalize the velocity, we obtain
the unit tangent vector in the same direction:

0
0= 1ol
We have
1= T() - T() )

for all ¢t. If we differentiate both sides of this equation we find that

T(t) - T(2)]

d
prl
= T'(t)- T(t) + T(t) - T'(¢)
= 2T'(t) - T(¢).

Thus T(¢) and T'(t) are always orthogonal. We define the unit normal vector
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N(t) =

For each t, the point r(¢) and the two orthogonal vectors T(¢) and N(¢) span a
plane P(t) called the osculating (“ kissing ”) plane. The osculating plane P(t)
contains the unit tangent vector T(t). Hence for each ¢, the curve C is tangent to
the plane P(t) at r(¢). When the motion is two-dimensional, i.e., z(t) = 0, P(t) is
just the zy plane. Note, however, that the normal vector N(¢) and the osculating
plane P(t) are not defined when T’(¢) = 0.

It is not obvious, but very important, that the acceleration vector a(t) also lies
in the osculating plane P(t). To see this, we shall show that a(t) can be written

a(t) = ar(t)T(t) + an(t)N(t) (3)

for a unique choice of coeflicients ar(t) and ay(t). Since T(¢) and N(¢) both lie
in the osculating plane P(t), the same is true of a(t). To derive (3), we note that

_v@ vl _
V(t) - ||V(t)|| - ” (t)” T(t) (4)



Now we differentiate (4) to obtain
at) = —v(t)= (%llv(t)ll) T (1) + V@) T'()

= (%llV(t)H) T() + vl T (O] N().
Thus the coefficients in (3) are

ar(t) = Sv(o)] )

and
ay(t) = v I'T ()] (6)
Note that ay > 0. The magnitude of the tangential component of acceleration is
|ar| while ay is the magnitude of the normal component of acceleration. a; is the
rate of change of the speed while ay expresses the rate of change of the direction
of the velocity.
Because T and N are orthogonal unit vectors, we have

lall* = a7 + ai. (7)

It can be rather tedious to compute ay and ay from (5) and (6) although it is
usually easy to compute v and a. Here are some alternate expressions for a; and
ay. First we see that

LIV = S v -v)(0) =2v(0)-alt) ©)
But using the chain rule we also have
d , d
Lol = 2l Livol ()
Equating (8) and (9) and dividing by ||v(¢)||, we arrive at
d a-v
ar = —|Iv(®)] = (10)
dt [v(@)l

Then use (7) to find ay:

ay = /|la|]* — af. (11)

Another expression for ay is derived from (3) by taking the cross product with
v. The cross product v x T = 0 because v and T are parallel. Hence the cross
product of (3) with v yields

axv=ay N xv.



Now v and N are orthogonal so that
laxv]l=ay [INxv]=ay|N[ |lv] = ay|v]|

Finally we arrive at

_Jlaxvll
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Example 1.1 Two-dimensional motion along a parabola. Consider the curve C
in the zy plane given by the function y = x?/2. The simplest, smooth, parame-
terization of C is

t —r(t) = (t,1%/2).

Then v(t) = (1,¢) and

_ (L)
0=z
and
1 . (_ta 1)
T® = g

Next we see that

T (-4
NO= ) = Vi e

Now a(t) = (0,1) so that a-v = ¢. It follows that

a-v t

IVl Vire
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ay = +/||a||? — d% = :
v =il = =

Hence, the decomposition (3) of the acceleration is

Then using (7),

t (1,1) 1 (—t,1)
\/1+t2)\/1+t2 " (\/1+t2)\/1+t2'

Another smooth parametrization of C is

a=(0,1)=(

t— (t+1 (t+1t%)?/2).

If you calculate v and a in this parameterization, the results are different. However
T and N turn out to be the same. We shall see later that T and N are independent
of the parameterization. They are determined by the geometry of the curve.



Example 1.2 Circular motion in the plane. Let the C' be the circle of radius p,
centered at (0,0). We shall parametrize C' with

t — r(t) = p(cos(wt), sin(wt)), 0<t<27/w.

This is actually a family of parameterizations depending on the angular velocity w
which has the units of radians/time. The velocity v(t) = pw(— sin(wt), cos(wt))
and the speed ||v(t)|| = pw = vy is constant. The unit tangent vector is

= v(®) = (—sin(wt), cos(w

and the unit normal vector is

N(t) = (- cos(wt), — sin(wt)). (13)

Since the speed is constant, ar = (d/dt)||v(t)|| = 0. There is no accleration in the
tangential direction. Hence the acceleration must be all in the normal direction.
We calculate

a = pw?(—cos(wt), —sin(wt))

V2
= pw’N=-2N.
P
Hence
% (14
anNy = —.
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Example 1.3 The circular helix with a linear rise function. We take
r(t) = p(cos(wt), sin(wt), ct).
The “ rise function ” is z(t) = ct where ¢ > 0. The velocity
v(t) = (—pwsin(wt), pw sin(wt),c)
and the speed is again constant, ||[v(¢)|| = v/p?w? + 2. The acceleration is
a(t) = pw?(— cos(wt), —sin(wt),0).
Again ar = (d/dt)||v(t)|| = 0. Hence a(t) = axyN(t) with ay = pw? and

N(t) = (— cos(wt), —sin(wt), 0).



2. Curvature

Suppose a curve C is parameterized by ¢ — r(t). At each time ¢, ay is a
measure of the circular component of the motion. To see this idea more explicitly,
we fix a time ¢y and let Py = r(f;). We imagine a circle of radius p lying in the
osculating plane P(t) when ¢t = ty. We take its center to be the point Py+ pN(tp).
For any choice of p, this circle will be tangent to the curve C at Py (see Figure 1).
If a point moves around the circle with angular velocity w, its speed is vy = pw.
We assume that the circle is parameterized so that the tangent vector to the circle
at P, points in the same direction as r'(t;). We shall choose the parameters v
and p so that the motion around the circle coincides with the circular component
of the motion on the curve C' at F,. In physical terms, if we are riding a bicycle,
and at time ¢y, we fix the angle of the handle bars, and continue at a constant
speed, what will be the circle followed by the bicycle ?

First we choose vy = ||r'(#)||. This will ensure that the motion around the
circle and on C' have the same velocity vector at Fy. Next we choose p so that the
normal acceleration of the circular motion, given by (14), agrees with the normal
acceleration of r(t) when ¢ = ty. Thus we set

v

i Il (t) I 11T (20) -

Since vy = ||r'(o)||, the radius of the circle is found to be

Il )
IT" (%)

When vy and p are chosen this way, the circle is known as the osculating circle.
The reciprocal of (15) is called the curvature at the point P, :

_ [T (o)l
K= T .
I (o)
The radius p of the circle is called the radius of curvature at P,.
Some alternate expressions for the curvature, that are easier to use for com-
putations, come from (6) and (12). They are

(16)

an l|la x v||
K= = . (17)
IvIz v
The second formula is probably the easiest to use. In two dimensions this formula
reduces to

|x”y' _ x/y//|
(@) + ()

(18)
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Figure 1: Curve t — (£,4?/2) with several tangent circles at the point Py =
(1,1/2). The osculating circle is the one in solid line.



In particular, we see that if C' is the circle parameterized by
t — p(cos(wt), sin(wt)), 0<t<2m/w

then k = 1/p is independent of the angular velocity w. This is an example of the
fact that curvature is determined by the geometry of the curve, being independent
of the parameterization.

To see that T, N, and k are independent of the parameterization, we describe
them in terms of parameterization with respect to arc length. Let ¢ — r(¢) be a
parameteriztion of a curve C', a < t < b. We define the arc length parameter by

= [ ()l du. (19)

We have s(a) = 0 and s(b) = L where L is the length of the curve and ds/dt =
IIr'(t)]|- Let s — q(s), 0 < s < L parameterize C with respect to arc length.

Then
r(t) = q(s(t)). (20)

For example, in the case of a circle of radius p, the parameterization with respect
to arc length is

s = q(s) = p(cos(s/p), sin(s/p)).
We differentiate (20) to find

r'(t) = o/(s(t)) ds/dt = q'(s(t)) [I'(£)]]- (21)

Hence

) _
T(t) = ool =q'(s(1)). (22)

Thus q'(s) is always a unit tangent vector. To see how N is expressed in terms of
arc length, differentiate (22):

T'(t) = a"(s(2) [IF' (D)1 (23)
We have
() _ q"(s(t))
IO Nl (@)
Finally we see from (21) and (23) that x has a very simple expression in terms
of arc length:

N(t) =

[T (@)l
Ol

= lla"(s@)Il - (24)

K =



Since r(t) was an arbitrary parameterization of C', we conclude that « is indepen-
dent of the parameterization.

As a consequence, we can characterize the osculating circle at the point P
on C as follows. Let s — q(s) be the parameterization of C' with respect to arc
length, and let s — p(s) be the parameterization of the osculating circle with
respect to arc length. Then

P(s0) = 4q(s0)
P'(s0) = d'(s0)-

These two equations express the fact the osculating circle at Py is tangent to the
curve C at P,. But in addition, the radius p is chosen so that

pII(SO) — qll(so)

This means that near P, the osculating circle is a very good approximation to the
curve C'.

When the curve is parameterized with respect to arc length, the formula (24)
for k is very simple, k = ||q"(s)||. However, the parameterization with respect to
arc length may be very difficult or impossible to compute. It may be more natural
to use another parameterization.

Example 2.1 We return to example 1.1 where the curve C' is the graph of the
parabola y = 2%/2. We shall use the parameterization

t— (t,8%/2)
whence r'(t) = v(t) = (1,t) and a = (0,1). We use (18) to compute k. We have
xllyl _ Slyll — _1

so that
1
1+ 2y

Obviously k has its largest value, Kk = 1 when ¢t = 0, and & tends to zero as t — 0.

K =

Example 2.2 Consider the ellipse whose equation is
2’ +y°/4=1.
A convenient parameterization is

r(t) = (cost, 2sint), 0 <t < 2.



Since v(t) = (—sint, 2cost) and a = (— cost, —2sint), we calculate x from (18).

(—cost)(2cost) — (—sint)(—2sint)
= —2(cos’t +sin’*t) = —2.

x//y/ _ :E'y"

Hence
2

"= [sin®t + 4 cos? ¢]3/2°

Kk is largest, kK = 2, when ¢t = /2 or t = 3w /2 (at the small ends of the ellipse). It
is smallest, k = 1/4, when ¢t = 0, 7.

Example 2.3 The circular helix, parameterized by r(t) = (cost, sint, ct) where
¢ > 0. As we saw before, v(t) = (—sint, cost, ¢) and a = (—cost, —sint, 0).
Consequently

ax v = (csint, —ccost, 1)

so that [|a x v|| = v/1 + ¢2. Finally, using (17),

la x v]| V14 ¢? 1
K= = =

P T Osepr - ire

Example 2.4 Consider the curve parameterized by
t — (t*cost, t*sint,2 — ).
We see that
v = (2tcost — t*sint, 2tsint + t*cost, —1)

and
a= (2cost — 4tsint — t* cost, 2sint + 4t cost, 0).

We shall calculate T, N and the curvature. Now
|v|[* = (2t cost — t?sint)® + (2tsint + t* cost)® + 1
and using the identity sin®¢ + cos?t = 1 several times we find that

Iv(®)]| = V1+ 482 + ¢4

Hence
v (2tcost — t?sint, 2tsint + t2 cost, —1)

T= = .
vl V1442 + ¢4

(25)
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Calculating T' from this expression would be a bear. Instead we note that T =
v/||v|| so that

a d 1

S (L S Y I
Vv

a_ vod

= T — —||v
vl VI a

. a Vv a-v
M~ VE TV

allv|* — (a-v)v

[v]?
Therefore T’ )
No T alvl(av)y o
1T llallv]]* = (a-v)v]|

Now at least we can find T and N at ¢ = 0. We have
T(0) = v(0) = (0,0, -1)
and since a(0) = (2,0,0) , formula (26) implies that
a(0)
EC]

Hence the osculating plane at (0, 0, 0) is the zz plane and the osculating circle has
its center on the positive x axis. We find the radius of the osculating circle by
calculating the curvature. The vector product a x v is not too hard to calculate,
and we find that

N(0)

= (1,0,0).

la x v|| = V4 + 12¢2 + 37t + 1216 + 8.

The curvature is therefore

Clax v VA+1262 42780 41216 + 8
B (1+4¢2 4 ¢4)3/2

In particular, £(0) = 2 so that the osculating circle at (0,0, 0) has radius 1/2 and
is centered at the point (1/2,0,0).



