## NOTES ON ACCELERATION AND CURVATURE

## 1. Acceleration

Let  $\mathbf{r}(t)$  parametrize a smooth curve C. The velocity is  $\mathbf{v}(t) = \mathbf{r}'(t)$  and the acceleration is  $\mathbf{a}(t) = \mathbf{v}'(t) = \mathbf{r}''(t)$ . When we normalize the velocity, we obtain the *unit tangent vector* in the same direction:

$$\mathbf{T}(t) = \frac{\mathbf{v}(t)}{\|\mathbf{v}(t)\|}.$$

We have

$$1 = \mathbf{T}(t) \cdot \mathbf{T}(t) \tag{1}$$

for all t. If we differentiate both sides of this equation we find that

$$0 = \frac{d}{dt} [\mathbf{T}(t) \cdot \mathbf{T}(t)]$$
  
=  $\mathbf{T}'(t) \cdot \mathbf{T}(t) + \mathbf{T}(t) \cdot \mathbf{T}'(t)$   
=  $2\mathbf{T}'(t) \cdot \mathbf{T}(t)$ .

Thus  $\mathbf{T}(t)$  and  $\mathbf{T}'(t)$  are always orthogonal. We define the unit normal vector

$$\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{\|\mathbf{T}'(t)\|.} \tag{2}$$

For each t, the point  $\mathbf{r}(t)$  and the two orthogonal vectors  $\mathbf{T}(t)$  and  $\mathbf{N}(t)$  span a plane  $\mathcal{P}(t)$  called the osculating ("kissing") plane. The osculating plane  $\mathcal{P}(t)$  contains the unit tangent vector  $\mathbf{T}(t)$ . Hence for each t, the curve C is tangent to the plane  $\mathcal{P}(t)$  at  $\mathbf{r}(t)$ . When the motion is two-dimensional, i.e.,  $z(t) \equiv 0$ ,  $\mathcal{P}(t)$  is just the xy plane. Note, however, that the normal vector  $\mathbf{N}(t)$  and the osculating plane  $\mathcal{P}(t)$  are not defined when  $\mathbf{T}'(t) = 0$ .

It is not obvious, but very important, that the acceleration vector  $\mathbf{a}(t)$  also lies in the osculating plane  $\mathcal{P}(t)$ . To see this, we shall show that  $\mathbf{a}(t)$  can be written

$$\mathbf{a}(t) = a_T(t)\mathbf{T}(t) + a_N(t)\mathbf{N}(t) \tag{3}$$

for a unique choice of coefficients  $a_T(t)$  and  $a_N(t)$ . Since  $\mathbf{T}(t)$  and  $\mathbf{N}(t)$  both lie in the osculating plane  $\mathcal{P}(t)$ , the same is true of  $\mathbf{a}(t)$ . To derive (3), we note that

$$\mathbf{v}(t) = \frac{\mathbf{v}(t) \|\mathbf{v}(t)\|}{\|\mathbf{v}(t)\|} = \|\mathbf{v}(t)\| \mathbf{T}(t). \tag{4}$$

Now we differentiate (4) to obtain

$$\mathbf{a}(t) = \frac{d}{dt}\mathbf{v}(t) = \left(\frac{d}{dt}\|\mathbf{v}(t)\|\right)\mathbf{T}(t) + \|\mathbf{v}(t)\|\mathbf{T}'(t)$$
$$= \left(\frac{d}{dt}\|\mathbf{v}(t)\|\right)\mathbf{T}(t) + \|\mathbf{v}(t)\|\|\mathbf{T}'(t)\|\mathbf{N}(t).$$

Thus the coefficients in (3) are

$$a_T(t) = \frac{d}{dt} \|\mathbf{v}(t)\| \tag{5}$$

and

$$a_N(t) = \|\mathbf{v}(t)\| \|\mathbf{T}'(t)\|.$$
 (6)

Note that  $a_N \geq 0$ . The magnitude of the tangential component of acceleration is  $|a_T|$  while  $a_N$  is the magnitude of the normal component of acceleration.  $a_T$  is the rate of change of the speed while  $a_N$  expresses the rate of change of the direction of the velocity.

Because T and N are orthogonal unit vectors, we have

$$\|\mathbf{a}\|^2 = a_T^2 + a_N^2. \tag{7}$$

It can be rather tedious to compute  $a_T$  and  $a_N$  from (5) and (6) although it is usually easy to compute  $\mathbf{v}$  and  $\mathbf{a}$ . Here are some alternate expressions for  $a_T$  and  $a_N$ . First we see that

$$\frac{d}{dt} \|\mathbf{v}(t)\|^2 = \frac{d}{dt} (\mathbf{v} \cdot \mathbf{v})(t) = 2\mathbf{v}(t) \cdot \mathbf{a}(t). \tag{8}$$

But using the chain rule we also have

$$\frac{d}{dt} \|\mathbf{v}(t)\|^2 = 2\|\mathbf{v}(t)\| \frac{d}{dt} \|\mathbf{v}(t)\|. \tag{9}$$

Equating (8) and (9) and dividing by  $\|\mathbf{v}(t)\|$ , we arrive at

$$a_T = \frac{d}{dt} \|\mathbf{v}(t)\| = \frac{\mathbf{a} \cdot \mathbf{v}}{\|\mathbf{v}(t)\|}.$$
 (10)

Then use (7) to find  $a_N$ :

$$a_N = \sqrt{\|\mathbf{a}\|^2 - a_T^2}. (11)$$

Another expression for  $a_N$  is derived from (3) by taking the cross product with  $\mathbf{v}$ . The cross product  $\mathbf{v} \times \mathbf{T} = 0$  because  $\mathbf{v}$  and  $\mathbf{T}$  are parallel. Hence the cross product of (3) with  $\mathbf{v}$  yields

$$\mathbf{a} \times \mathbf{v} = a_N \ \mathbf{N} \times \mathbf{v}.$$

Now  $\mathbf{v}$  and  $\mathbf{N}$  are orthogonal so that

$$\|\mathbf{a} \times \mathbf{v}\| = a_N \|\mathbf{N} \times \mathbf{v}\| = a_N \|\mathbf{N}\| \|\mathbf{v}\| = a_N \|\mathbf{v}\|.$$

Finally we arrive at

$$a_N = \frac{\|\mathbf{a} \times \mathbf{v}\|}{\|\mathbf{v}\|}. (12)$$

**Example 1.1** Two-dimensional motion along a parabola. Consider the curve C in the xy plane given by the function  $y = x^2/2$ . The simplest, smooth, parameterization of C is

$$t \to \mathbf{r}(t) = (t, t^2/2).$$

Then  $\mathbf{v}(t) = (1, t)$  and

$$\mathbf{T}(t) = \frac{(1,t)}{\sqrt{1+t^2}}$$

and

$$\mathbf{T}'(t) = \frac{(-t,1)}{(1+t^2)^{3/2}}.$$

Next we see that

$$\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{\|\mathbf{T}'(t)\|} = \frac{(-t, 1)}{\sqrt{1 + t^2}}.$$

Now  $\mathbf{a}(t) \equiv (0,1)$  so that  $\mathbf{a} \cdot \mathbf{v} = t$ . It follows that

$$a_T = \frac{\mathbf{a} \cdot \mathbf{v}}{\|\mathbf{v}(t)\|} = \frac{t}{\sqrt{1+t^2}}.$$

Then using (7),

$$a_N = \sqrt{\|\mathbf{a}\|^2 - a_T^2} = \frac{1}{\sqrt{1 + t^2}}.$$

Hence, the decomposition (3) of the acceleration is

$$\mathbf{a} = (0,1) = \left(\frac{t}{\sqrt{1+t^2}}\right) \frac{(1,t)}{\sqrt{1+t^2}} + \left(\frac{1}{\sqrt{1+t^2}}\right) \frac{(-t,1)}{\sqrt{1+t^2}}.$$

Another smooth parametrization of C is

$$t \to (t + t^3, (t + t^3)^2/2).$$

If you calculate **v** and **a** in this parameterization, the results are different. However **T** and **N** turn out to be the same. We shall see later that **T** and **N** are independent of the parameterization. They are determined by the geometry of the curve.

**Example 1.2** Circular motion in the plane. Let the C be the circle of radius  $\rho$ , centered at (0,0). We shall parametrize C with

$$t \to \mathbf{r}(t) = \rho(\cos(\omega t), \sin(\omega t)), \quad 0 \le t \le 2\pi/\omega.$$

This is actually a family of parameterizations depending on the angular velocity  $\omega$  which has the units of radians/time. The velocity  $\mathbf{v}(t) = \rho\omega(-\sin(\omega t), \cos(\omega t))$  and the speed  $\|\mathbf{v}(t)\| = \rho\omega \equiv v_0$  is constant. The unit tangent vector is

$$\mathbf{T}(t) = \frac{\mathbf{v}(t)}{\|\mathbf{v}(t)\|} = (-\sin(\omega t), \cos(\omega t))$$

and the unit normal vector is

$$\mathbf{N}(t) = (-\cos(\omega t), -\sin(\omega t)). \tag{13}$$

Since the speed is constant,  $a_T = (d/dt) ||\mathbf{v}(t)|| = 0$ . There is no accleration in the tangential direction. Hence the acceleration must be all in the normal direction. We calculate

$$\mathbf{a} = \rho \omega^2 (-\cos(\omega t), -\sin(\omega t))$$
$$= \rho \omega^2 \mathbf{N} = \frac{v_0^2}{\rho} \mathbf{N}.$$

Hence

$$a_N = \frac{v_0^2}{\rho}. (14)$$

**Example 1.3** The circular helix with a linear rise function. We take

$$\mathbf{r}(t) = \rho(\cos(\omega t), \sin(\omega t), ct).$$

The "rise function" is z(t) = ct where c > 0. The velocity

$$\mathbf{v}(t) = (-\rho\omega\sin(\omega t), \ \rho\omega\sin(\omega t), c)$$

and the speed is again constant,  $\|\mathbf{v}(t)\| = \sqrt{\rho^2 \omega^2 + c^2}$ . The acceleration is

$$\mathbf{a}(t) = \rho \omega^2 (-\cos(\omega t), -\sin(\omega t), 0).$$

Again  $a_T = (d/dt) ||\mathbf{v}(t)|| = 0$ . Hence  $\mathbf{a}(t) = a_N \mathbf{N}(t)$  with  $a_N = \rho \omega^2$  and

$$\mathbf{N}(t) = (-\cos(\omega t), -\sin(\omega t), 0).$$

## 2. Curvature

Suppose a curve C is parameterized by  $t \to \mathbf{r}(t)$ . At each time t,  $a_N$  is a measure of the circular component of the motion. To see this idea more explicitly, we fix a time  $t_0$  and let  $P_0 = \mathbf{r}(t_0)$ . We imagine a circle of radius  $\rho$  lying in the osculating plane  $\mathcal{P}(t)$  when  $t = t_0$ . We take its center to be the point  $P_0 + \rho \mathbf{N}(t_0)$ . For any choice of  $\rho$ , this circle will be tangent to the curve C at  $P_0$  (see Figure 1). If a point moves around the circle with angular velocity  $\omega$ , its speed is  $v_0 = \rho \omega$ . We assume that the circle is parameterized so that the tangent vector to the circle at  $P_0$  points in the same direction as  $\mathbf{r}'(t_0)$ . We shall choose the parameters  $v_0$  and  $\rho$  so that the motion around the circle coincides with the circular component of the motion on the curve C at  $P_0$ . In physical terms, if we are riding a bicycle, and at time  $t_0$  we fix the angle of the handle bars, and continue at a constant speed, what will be the circle followed by the bicycle?

First we choose  $v_0 = ||\mathbf{r}'(t_0)||$ . This will ensure that the motion around the circle and on C have the same velocity vector at  $P_0$ . Next we choose  $\rho$  so that the normal acceleration of the circular motion, given by (14), agrees with the normal acceleration of  $\mathbf{r}(t)$  when  $t = t_0$ . Thus we set

$$\frac{v_0^2}{\rho} = \|\mathbf{r}'(t_0)\| \|\mathbf{T}'(t_0)\|.$$

Since  $v_0 = ||\mathbf{r}'(t_0)||$ , the radius of the circle is found to be

$$\rho = \frac{\|\mathbf{r}'(t_0)\|}{\|\mathbf{T}'(t_0)\|}. (15)$$

When  $v_0$  and  $\rho$  are chosen this way, the circle is known as the osculating circle. The reciprocal of (15) is called the *curvature* at the point  $P_0$ :

$$\kappa = \frac{\|\mathbf{T}'(t_0)\|}{\|\mathbf{r}'(t_0)\|}.$$
 (16)

The radius  $\rho$  of the circle is called the radius of curvature at  $P_0$ .

Some alternate expressions for the curvature, that are easier to use for computations, come from (6) and (12). They are

$$\kappa = \frac{a_N}{\|\mathbf{v}\|^2} = \frac{\|\mathbf{a} \times \mathbf{v}\|}{\|\mathbf{v}\|^3}.$$
 (17)

The second formula is probably the easiest to use. In two dimensions this formula reduces to

$$\frac{|x''y' - x'y''|}{[(x')^2 + (y')^2]^{3/2}}. (18)$$



Figure 1: Curve  $t \to (t, t^2/2)$  with several tangent circles at the point  $P_0 = (1, 1/2)$ . The osculating circle is the one in solid line.

In particular, we see that if C is the circle parameterized by

$$t \to \rho(\cos(\omega t), \sin(\omega t)), \quad 0 \le t \le 2\pi/\omega$$

then  $\kappa = 1/\rho$  is independent of the angular velocity  $\omega$ . This is an example of the fact that curvature is determined by the geometry of the curve, being independent of the parameterization.

To see that  $\mathbf{T}, \mathbf{N}$ , and  $\kappa$  are independent of the parameterization, we describe them in terms of parameterization with respect to arc length. Let  $t \to \mathbf{r}(t)$  be a parameterization of a curve C,  $a \le t \le b$ . We define the arc length parameter by

$$s(t) = \int_a^t \|\mathbf{r}'(u)\| \ du. \tag{19}$$

We have s(a) = 0 and s(b) = L where L is the length of the curve and  $ds/dt = \|\mathbf{r}'(t)\|$ . Let  $s \to \mathbf{q}(s)$ ,  $0 \le s \le L$  parameterize C with respect to arc length. Then

$$\mathbf{r}(t) = \mathbf{q}(s(t)). \tag{20}$$

For example, in the case of a circle of radius  $\rho$ , the parameterization with respect to arc length is

$$s \to \mathbf{q}(s) = \rho(\cos(s/\rho), \sin(s/\rho)).$$

We differentiate (20) to find

$$\mathbf{r}'(t) = \mathbf{q}'(s(t)) \ ds/dt = \mathbf{q}'(s(t)) \ \|\mathbf{r}'(t)\|. \tag{21}$$

Hence

$$\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|} = \mathbf{q}'(s(t)). \tag{22}$$

Thus  $\mathbf{q}'(s)$  is always a unit tangent vector. To see how **N** is expressed in terms of arc length, differentiate (22):

$$\mathbf{T}'(t) = \mathbf{q}''(s(t)) \|\mathbf{r}'(t)\|. \tag{23}$$

We have

$$\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{\|\mathbf{T}'(t)\|} = \frac{\mathbf{q}''(s(t))}{\|\mathbf{q}''(s(t))\|}.$$

Finally we see from (21) and (23) that  $\kappa$  has a very simple expression in terms of arc length:

$$\kappa = \frac{\|\mathbf{T}'(t)\|}{\|\mathbf{r}'(t)\|} = \|\mathbf{q}''(s(t))\|.$$
(24)

Since  $\mathbf{r}(t)$  was an arbitrary parameterization of C, we conclude that  $\kappa$  is independent of the parameterization.

As a consequence, we can characterize the osculating circle at the point  $P_0$  on C as follows. Let  $s \to \mathbf{q}(s)$  be the parameterization of C with respect to arc length, and let  $s \to \mathbf{p}(s)$  be the parameterization of the osculating circle with respect to arc length. Then

$$\mathbf{p}(s_0) = \mathbf{q}(s_0)$$
$$\mathbf{p}'(s_0) = \mathbf{q}'(s_0).$$

These two equations express the fact the osculating circle at  $P_0$  is tangent to the curve C at  $P_0$ . But in addition, the radius  $\rho$  is chosen so that

$$\mathbf{p}''(s_0) = \mathbf{q}''(s_0).$$

This means that near  $P_0$  the osculating circle is a very good approximation to the curve C.

When the curve is parameterized with respect to arc length, the formula (24) for  $\kappa$  is very simple,  $\kappa = \|\mathbf{q}''(s)\|$ . However, the parameterization with respect to arc length may be very difficult or impossible to compute. It may be more natural to use another parameterization.

**Example 2.1** We return to example 1.1 where the curve C is the graph of the parabola  $y = x^2/2$ . We shall use the parameterization

$$t \to (t, t^2/2)$$

whence  $\mathbf{r}'(t) = \mathbf{v}(t) = (1, t)$  and  $\mathbf{a} = (0, 1)$ . We use (18) to compute  $\kappa$ . We have

$$x''y' - s'y'' = -1$$

so that

$$\kappa = \frac{1}{(1+t^2)^{3/2}}.$$

Obviously  $\kappa$  has its largest value,  $\kappa = 1$  when t = 0, and  $\kappa$  tends to zero as  $t \to 0$ .

**Example 2.2** Consider the ellipse whose equation is

$$x^2 + y^2/4 = 1.$$

A convenient parameterization is

$$\mathbf{r}(t) = (\cos t, \ 2\sin t), \ \ 0 \le t \le 2\pi.$$

Since  $\mathbf{v}(t) = (-\sin t, \ 2\cos t)$  and  $\mathbf{a} = (-\cos t, \ -2\sin t)$ , we calculate  $\kappa$  from (18).

$$x''y' - x'y'' = (-\cos t)(2\cos t) - (-\sin t)(-2\sin t)$$
$$= -2(\cos^2 t + \sin^2 t) = -2.$$

Hence

$$\kappa = \frac{2}{[\sin^2 t + 4\cos^2 t]^{3/2}}.$$

 $\kappa$  is largest,  $\kappa=2$ , when  $t=\pi/2$  or  $t=3\pi/2$  (at the small ends of the ellipse). It is smallest,  $\kappa=1/4$ , when  $t=0,\pi$ .

**Example 2.3** The circular helix, parameterized by  $\mathbf{r}(t) = (\cos t, \sin t, ct)$  where c > 0. As we saw before,  $\mathbf{v}(t) = (-\sin t, \cos t, c)$  and  $\mathbf{a} = (-\cos t, -\sin t, 0)$ . Consequently

$$\mathbf{a} \times \mathbf{v} = (c \sin t, -c \cos t, 1)$$

so that  $\|\mathbf{a} \times \mathbf{v}\| = \sqrt{1 + c^2}$ . Finally, using (17),

$$\kappa = \frac{\|\mathbf{a} \times \mathbf{v}\|}{\|\mathbf{v}\|^3} = \frac{\sqrt{1+c^2}}{(1+c^2)^{3/2}} = \frac{1}{1+c^2}.$$

**Example 2.4** Consider the curve parameterized by

$$t \rightarrow (t^2 \cos t, \ t^2 \sin t, 2 - t).$$

We see that

$$\mathbf{v} = (2t\cos t - t^2\sin t, \ 2t\sin t + t^2\cos t, \ -1)$$

and

$$\mathbf{a} = (2\cos t - 4t\sin t - t^2\cos t, \ 2\sin t + 4t\cos t, \ 0).$$

We shall calculate **T**, **N** and the curvature. Now

$$\|\mathbf{v}\|^2 = (2t\cos t - t^2\sin t)^2 + (2t\sin t + t^2\cos t)^2 + 1$$

and using the identity  $\sin^2 t + \cos^2 t = 1$  several times we find that

$$\|\mathbf{v}(t)\| = \sqrt{1 + 4t^2 + t^4}.$$

Hence

$$\mathbf{T} = \frac{\mathbf{v}}{\|\mathbf{v}\|} = \frac{(2t\cos t - t^2\sin t, 2t\sin t + t^2\cos t, -1)}{\sqrt{1 + 4t^2 + t^4}}.$$
 (25)

Calculating  $\mathbf{T}'$  from this expression would be a bear. Instead we note that  $\mathbf{T} = \mathbf{v}/\|\mathbf{v}\|$  so that

$$\mathbf{T}' = \frac{\mathbf{a}}{\|\mathbf{v}\|} + \mathbf{v} \frac{d}{dt} (\frac{1}{\|\mathbf{v}\|})$$

$$= \frac{\mathbf{a}}{\|\mathbf{v}\|} - \frac{\mathbf{v}}{\|\mathbf{v}\|^2} \frac{d}{dt} \|\mathbf{v}\|$$

$$= \frac{\mathbf{a}}{\|\mathbf{v}\|} - \frac{\mathbf{v}}{\|\mathbf{v}\|^2} \frac{\mathbf{a} \cdot \mathbf{v}}{\|\mathbf{v}\|}$$

$$= \frac{\mathbf{a}\|\mathbf{v}\|^2 - (\mathbf{a} \cdot \mathbf{v})\mathbf{v}}{\|\mathbf{v}\|^3}.$$

Therefore

$$\mathbf{N} = \frac{\mathbf{T}'}{\|\mathbf{T}'\|} = \frac{\mathbf{a}\|\mathbf{v}\|^2 - (\mathbf{a} \cdot \mathbf{v})\mathbf{v}}{\|\mathbf{a}\|\mathbf{v}\|^2 - (\mathbf{a} \cdot \mathbf{v})\mathbf{v}\|}$$
(26)

Now at least we can find **T** and **N** at t = 0. We have

$$\mathbf{T}(0) = \mathbf{v}(0) = (0, 0, -1)$$

and since  $\mathbf{a}(0) = (2, 0, 0)$ , formula (26) implies that

$$\mathbf{N}(0) = \frac{\mathbf{a}(0)}{\|\mathbf{a}(0)\|} = (1, 0, 0).$$

Hence the osculating plane at (0,0,0) is the xz plane and the osculating circle has its center on the positive x axis. We find the radius of the osculating circle by calculating the curvature. The vector product  $\mathbf{a} \times \mathbf{v}$  is not too hard to calculate, and we find that

$$\|\mathbf{a} \times \mathbf{v}\| = \sqrt{4 + 12t^2 + 37t^4 + 12t^6 + t^8}.$$

The curvature is therefore

$$\kappa = \frac{\|\mathbf{a} \times \mathbf{v}\|}{\|\mathbf{v}\|^3} = \frac{\sqrt{4 + 12t^2 + 27t^4 + 12t^6 + t^8}}{(1 + 4t^2 + t^4)^{3/2}}.$$

In particular,  $\kappa(0) = 2$  so that the osculating circle at (0,0,0) has radius 1/2 and is centered at the point (1/2,0,0).