MATH/CMSC 456, Jeffrey Adams FINAL May 18, 2005 SOLUTIONS

1. [25 points]
(a) Hill Cipher YES
(b) RSA NO
(c) Affine Cipher YES
(d) DES NO
(e) Vigenère YES
2. [30]
(a) There is no decryption function, since the function is not invertible. The problem is $(4,50)=2 \neq 1$ so f^{-1} does not exist, since it would have to satisfy $f^{-1}(y)=4^{-1}(x-20)(\bmod 50)$.
(b) We have $28=4 x+20$, or $4 x=8(\bmod 50)$. Divide both sides by $(4,50)=2$ to give $2 x=4(\bmod 25)$. So $x=2$ or $25+2=27$ $(\bmod 50)$.
Alternatively, obviously 2 is a solution. Then since $4 \times 25=0$ $(\bmod 50)$, we can add any multiple of 25 to this. But adding 50 doesn't change the answer $(\bmod 50)$, so the two solutions are 2 and 27 .
(c) We have $y=4 x+20(\bmod 50)$, so $17=4 x+20$, or $4 x=-3$ $(\bmod 50)$. Since 3 is no divisible by $(4,50)=2$ this has not solutions. (To be explicit, if $4 x=-3(\bmod 50)$, then $4 x=-3+$ $50 k$ for some integer k. Then $-3=4 x-50 k$; the right hand side is divisible by 2 and the left hand side isn't, a contradiction.)
3. [30]
(a) We must have $(e, \phi(n))=1$. Note that $\phi(p q r)=n\left(1-\frac{1}{p}\right)(1-$ $\left.q \frac{1}{q}\right)\left(1-r \frac{1}{r}\right)=(p-1)(q-1)(r-1)$. So we must have $(e,(p-1)(q-$ 1) $(r-1))=1$.
(b) Solve $d e=1(\bmod (p-1)(q-1)(r-1))$. This we can do by (a).
4. [30]
(a) This is the $p-1$ factorization method, which works since $p-1$ has all small factors. Note that 35 ! has 32 powers of 2 . That is, it contains $2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34$, for a total of $1+2+1+3+1+2+1+4+1+2+1+3+1+2+1+5+1=32$ factors of 2 . It is also obviously divisibly by 3 . So $p-1 \mid 35$!, i.e. $35!=(p-1) k$ for some integer k. Then $2^{35!}=2^{k(p-1)}=\left(2^{p-1}\right)^{k}=$ $1(\bmod p)$ by Fermat.
(b) Compute $\left(2^{35!}-1, n\right)$. Since $2^{35!}=1(\bmod p), p \mid 2^{35!}-1$. Also $q-1$ does not divide 35 ! since $53 \mid q-1$. So $2^{35!} \neq 1(\bmod q)$. Therefore $\left(2^{35!}-1, n\right)=p$.
5. [30]
(a) Compute

$$
\begin{aligned}
\beta^{r} r^{s} & =\beta^{r}\left(\beta^{v} \alpha^{u}\right)^{-r v^{-1}} \\
& =\beta^{r} \beta^{-r} \alpha^{-r u v^{-1}} \\
& =\alpha^{\left(-r v^{-1}\right) u} \\
& =\alpha^{s u} \\
& =\alpha^{m}
\end{aligned}
$$

(everything is $\bmod n$).
(b) No, she has to pick u, v first and then m.
(c) Again since she picks r, s first, and then u, she would have to solve $h(m)=s u(\bmod p-1)$. But this isn't possible with a hash function.
6. [15] The key is $2^{x y}(\bmod p)=2^{21}(\bmod 29)=\left(2^{5}\right)^{4} \times 2(\bmod 35)$, or $3^{4} \times 2(\bmod 35)=81 \times 2=46=17(\bmod 29)$.
7. (a) This is $P+(-P)=\infty$.
(b) Since ∞ is like 0 , this is $(9,10)$.
(c) First of all $m=(12-4) /(7-2)=8 / 5(\bmod 31)$. We need 5^{-1} $(\bmod 35)$. Clearly $5 \times 6=-1(\bmod 31)$, so $5^{-1}=-6=25$ $(\bmod 31)$. So $m=8 \times 25=200=14(\bmod 31)$, and $x_{3}=$ $14^{2}-2-7=1(\bmod 31)$. Then $y_{3}=14(2-1)-4=10(\bmod 31)$. So the solution is $(1,10)$.
(d) Solve $y^{2}=8^{3}+16+4=5(\bmod 31)$. This is easy: $31+5=36$, so $y=6$ is a solution. So there are exactly two solutions $y= \pm 6$.
(e) Solve $y^{2}=5^{3}+10+b(\bmod 223676221)=135+b(\bmod 223676221)$. So we just need $b+135$ is a square $(\bmod 223676221)$. For example take $b=9$ so $y^{2}=144$, i.e. $y= \pm 12$. You could also take $b=-14(\bmod 223676221)$, so $y^{2}=121$, i.e. $y= \pm 11$. Note that p is mostly irrelevant here.

