MATH/CMSC 456, Jeffrey Adams

Review for Final, May 18, 2009 (8-10 AM, Math B0429)

- 1. Chapter 2
 - (a) Shift and affine ciphers
 - (b) Vigenère cipher
 - (c) Block ciphers, Hill cipher
 - (d) One-time pads
 - (e) Linear feedback shift registers
- 2. Chapter 3
 - (a) Prime numbers
 - (b) Euclidean algorithm, greatest common divisor, extended Euclidean algorithm
 - (c) Chinese Remainder Theory
 - (d) Congruences
 - (e) Inverses (mod n), solving $ax = b \pmod{n}$
 - (f) Fermat's and Euler's theorems
- 3. Chapter 4 The main thing to understand is the idea of Feistel systems. Also DES is not a group, triple DES, meet-in-the-middle attacks.
- 4. Chapter 6
 - (a) Public Key Cryptography
 - (b) Definition of RSA
 - (c) Primality testing and factoring:
 - i. the Basic Principle (page 176)
 - ii. Fermat test
 - iii. p-1 factoring algorithm
 - iv. Miller Rabin and Universal Exponent method
 - v. Quadratic Sieve
- 5. Chapter 7
 - (a) Basics of discrete logarithms
 - (b) Pohlig-Hellman
 - (c) Baby Step, Giant Step
 - (d) Diffie Hellman key exchange
 - (e) ElGamal cryptosystem

- 6. Chapter 8 (Hash Functions)
 - (a) Basics of hash functions
 - (b) Birthday attacks
 - (c) Birthday attack on discrete logarithms
- 7. Chapter 9 (Digital Signatures)
 - (a) Basic idea of digital signatures
 - (b) RSA signatures
 - (c) ElGamal signatures (you don't need to remember the formula)
 - (d) Hashing and signatures
 - (e) Birthday attacks on digital signatures
- 8. Chapter 12 (Secret Sharing)
 - (a) Basic concept of secret sharing
 - (b) (t, w)-threshold schemes
 - (c) Shamir threshold scheme
- 9. Chapter 14 (Zero Knowledge)
 - (a) Basic concept of zero-knowledge
 - (b) Square-root zero knowledge algorithm
- 10. Chapter 16 (Elliptic Curves)
 - (a) Basic concepts of elliptic curves
 - (b) Addition law on an elliptic curve
 - (c) Hasse's theorem
 - (d) Discrete logarithms on elliptic curves
 - (e) Representing plaintext
 - (f) Factoring with elliptic curves
 - (g) ElGamal on elliptic curves
 - (h) Diffie-Hellman on elliptic curves