Math/Cmsc 456, Jeffrey Adams Test I, March 28, 2008 SOLUTIONS For full credit you must show your work.

- 1. $E_{a,b}(E_{c,d})(x) = E_{a,b}(cx+d) = a(cx+d) + b = (ac)x + (ad+b)$ (all (mod 26)) so $e = ac \pmod{26}$ and $f = ad + b \pmod{26}$.
- 2. By the basic principle (11144 9663, 30815167) is a proper divisor of = 30815167. In fact 30815167 = (11144 9663)(1114 + 9663) = 1481 * 20807, and both factors are prime.
- 3. Since 39 = 3 * 13, by the Chinese Remainder Theorem this is equivalent to the two equations

$$x^2 \equiv 1 \mod (3)$$
$$x^2 \equiv 1 \mod (13)$$

Each equation has two solutions $x = \pm 1$, i.e. $x \equiv \pm 1 \mod (3)$ and $x \equiv \pm 1 \mod (13)$.

To find simultaneous solutions to the equation $\mod (39)$ we take $x = \pm 1 \mod (3)$ and $x = \pm 1 \mod (13)$. There are 4 cases, or two cases $\pm a, \pm b$. Obviously ± 1 are solutions. We need to find one more. To do this, solve

$$x \equiv 1 \mod (3)$$
$$x \equiv -1 \mod (13)$$

This has solution $x \equiv 25 \mod (39)$. The four solutions are thus $\pm 1, \pm 25 \pmod{39}$ or $1, 14, 25, 38 \pmod{39}$.

4. Take the equation $3^x = 65, 281$. Since $65, 281^2 = -1 \pmod{p}$, square both sides to get get $3^{2x} = -1$. Square again to get $3^{4x} = 1$. Therefore, since 3 is a primitive root, p-1 divides 4x. Therefore 4x = k(p-1), and $x = \frac{k(p-1)}{4}$. The four distinct possibilities $\mod{(p-1)}$ are therefore $p-1, \frac{p-1}{4}, \frac{2(p-1)}{4} = \frac{p-1}{2}, \frac{3(p-1)}{4}$.

Obviously p-1 isn't correct, since $3^{p-1} = 1$. Also $3^{\frac{p-1}{2}} = -1$, so this isn't correct either. The two reasonable possible solutions are $x = \frac{p-1}{4}$ and $x = \frac{3(p-1)}{4}$. In fact $x = \frac{p-1}{4}$.

Another way to do this is by Pollig-Hellman. Note that $p-1 = 2^{16}$, so we only have to work mod (2). Write $x = x_0 + 2x_1 + 4x_2 + \ldots$ Since $\beta^2 = 1$, $\beta^{(p-1)/2^k} = 1$ for $k = 0, 1, \ldots, 14$. This says that $x_0 = x_1 = \ldots x_{13} = 0$, and $x_{14} = 1$. That is $x = 2^{14} = \frac{p-1}{4}$.

5. From the description we have $m^{e*e} = m \mod (n)$. But of course $m^{e*d} = m \mod (n)$ where d is the decryption key. Apparently d = e. Since d is defined by $e*d \equiv 1 \mod \phi(n)$, it must be that $e^2 \equiv 1 \mod (\phi(n))$. This is indeed the case.

Since e = d the same thing will hold for any message. That is 49693658 encrypted twice will give back 49693658.

- 6. Since Eve knows both e and f she can use the Euclidean algorithm to find x, y so that xe + yf = 1. Then $m^{xe+yf} = m^1 = m$, i.e. $(m^e)^x (m^f)^y = m$. Since Eve has x, y, m^e and m^f she can compute $(m^e)^x (m^f)^y = m$.
- 7. After one round we have

$$L_1 = R_0$$
$$R_1 = L_0 \oplus R_0$$

Then

$$L_{2} = R_{1} = L_{0} \oplus R_{0}$$
$$R_{2} = L_{1} \oplus R_{1} = R_{0} \oplus (L_{0} \oplus R_{0}) = L_{0}$$

The next step is

$$L_3 = R_2 = L_0$$

 $R_3 = L_2 \oplus R_2 = (L_0 \oplus R_0) \oplus L_0 = R_0$

so we're done, and n = 3.