Math/Cmsc 456, Jeffrey Adams

Test I, March 28, 2008 SOLUTIONS

For full credit you must show your work.

1. $E_{a, b}\left(E_{c, d}\right)(x)=E_{a, b}(c x+d)=a(c x+d)+b=(a c) x+(a d+b)($ all $(\bmod 26))$ so $e=a c(\bmod 26)$ and $f=a d+b(\bmod 26)$.
2. By the basic principle $(11144-9663,30815167)$ is a proper divisor of $=30815167$. In fact $30815167=(11144-9663)(1114+9663)=$ $1481 * 20807$, and both factors are prime.
3. Since $39=3 * 13$, by the Chinese Remainder Theorem this is equivalent to the two equations

$$
\begin{array}{ll}
x^{2} \equiv 1 & \bmod (3) \\
x^{2} \equiv 1 & \bmod (13)
\end{array}
$$

Each equation has two solutions $x= \pm 1$, i.e. $x \equiv \pm 1 \bmod (3)$ and $x \equiv \pm 1 \bmod (13)$.
To find simultaneous solutions to the equation $\bmod (39)$ we take $x=$ $\pm 1 \bmod (3)$ and $x= \pm 1 \bmod$ (13). There are 4 cases, or two cases $\pm a, \pm b$. Obviously ± 1 are solutions. We need to find one more. To do this, solve

$$
\begin{aligned}
& x \equiv 1 \quad \bmod (3) \\
& x \equiv-1 \quad \bmod (13)
\end{aligned}
$$

This has solution $x \equiv 25 \bmod (39)$. The four solutions are thus $\pm 1, \pm 25(\bmod 39)$ or $1,14,25,38(\bmod 39)$.
4. Take the equation $3^{x}=65,281$. Since $65,281^{2}=-1(\bmod p)$, square both sides to get get $3^{2 x}=-1$. Square again to get $3^{4 x}=1$. Therefore, since 3 is a primitive root, $p-1$ divides $4 x$. Therefore $4 x=k(p-1)$, and $x=\frac{k(p-1)}{4}$. The four distinct possibilities $\bmod (p-1)$ are therefore $p-1, \frac{p-1}{4}, \frac{2(p-1)}{4}=\frac{p-1}{2}, \frac{3(p-1)}{4}$.
Obviously $p-1$ isn't correct, since $3^{p-1}=1$. Also $3^{\frac{p-1}{2}}=-1$, so this isn't correct either. The two reasonable possible solutions are $x=\frac{p-1}{4}$ and $x=\frac{3(p-1)}{4}$. In fact $x=\frac{p-1}{4}$.
Another way to do this is by Pollig-Hellman. Note that $p-1=2^{16}$, so we only have to work $\bmod (2)$. Write $x=x_{0}+2 x_{1}+4 x_{2}+\ldots$. Since $\beta^{2}=1, \beta^{(p-1) / 2^{k}}=1$ for $k=0,1, \ldots, 14$. This says that $x_{0}=x_{1}=$ $\ldots x_{13}=0$, and $x_{14}=1$. That is $x=2^{14}=\frac{p-1}{4}$.
5. From the description we have $m^{e * e}=m \bmod (n)$. But of course $m^{e * d}=m \bmod (n)$ where d is the decryption key. Apparently $d=e$. Since d is defined by $e * d \equiv 1 \bmod \phi(n)$, it must be that $e^{2} \equiv 1$ $\bmod (\phi(n))$. This is indeed the case.
Since $e=d$ the same thing will hold for any message. That is 49693658 encrypted twice will give back 49693658.
6. Since Eve knows both e and f she can use the Euclidean algorithm to find x, y so that $x e+y f=1$. Then $m^{x e+y f}=m^{1}=m$, i.e. $\left(m^{e}\right)^{x}\left(m^{f}\right)^{y}=m$. Since Eve has x, y, m^{e} and m^{f} she can compute $\left(m^{e}\right)^{x}\left(m^{f}\right)^{y}=m$.
7. After one round we have

$$
\begin{aligned}
L_{1} & =R_{0} \\
R_{1} & =L_{0} \oplus R_{0}
\end{aligned}
$$

Then

$$
\begin{aligned}
& L_{2}=R_{1}=L_{0} \oplus R_{0} \\
& R_{2}=L_{1} \oplus R_{1}=R_{0} \oplus\left(L_{0} \oplus R_{0}\right)=L_{0}
\end{aligned}
$$

The next step is

$$
\begin{aligned}
& L_{3}=R_{2}=L_{0} \\
& R_{3}=L_{2} \oplus R_{2}=\left(L_{0} \oplus R_{0}\right) \oplus L_{0}=R_{0}
\end{aligned}
$$

so we're done, and $n=3$.

